Statistical Knowledge Patterns: Identifying Synonymous Relations in Large Linked Datasets Ziqi Zhang, Anna Lisa Gentile, Eva Blomqvist, Isabelle Augenstein,

Slides:



Advertisements
Similar presentations
Natural Language Interfaces to Ontologies Danica Damljanović
Advertisements

Towards a Top-K SPARQL Query Benchmark Generator Shima Zahmatkesh 1, Emanuele Della Valle 1, Daniele Dell’Aglio 1, and Alessandro Bozzon 2 1 Politecnico.
Query Optimization of Frequent Itemset Mining on Multiple Databases Mining on Multiple Databases David Fuhry Department of Computer Science Kent State.
Store RDF Triples In A Scalable Way Liu Long & Liu Chunqiu.
Probabilistic Latent-Factor Database Models Denis Krompaß 1, Xueyan Jiang 1,Maximilian Nickel 2 and Volker Tresp 1,3 1 Department of Computer Science.
Chapter 3 Querying RDF stores with SPARQL. TL;DR We will want to query large RDF datasets, e.g. LOD SPARQL is the SQL of RDF SPARQL is a language to query.
Data Intensive Techniques to Boost the Real-time Performance of Global Agricultural Data Infrastructures SEMAGROW U SING A POWDER T RIPLE S TORE FOR BOOSTING.
Ameet N Chitnis, Abir Qasem and Jeff Heflin 11 November 2007.
CSCI 572 Project Presentation Mohsen Taheriyan Semantic Search on FOAF profiles.
Query Processing and Reasoning How Useful are Natural Language Interfaces to the Semantic Web for Casual End-users? Esther Kaufmann and Abraham Bernstein.
Using PHP in Linked Data Applications Jie Bao Oct 12.
Digging Up Data: The Archaeotools project, Faceted Classification and Natural Language Processing in an archaeological context. Stuart Jeffrey, Julian.
Stuart Jeffrey, Julian Richards, Fabio Ciravegna Stewart Waller, Sam Chapman, Ziqi ZhangTony Austin. STAR/Archaeotools Workshop, York, 9 th May Stuart.
A Statistical and Schema Independent Approach to Identify Equivalent Properties on Linked Data † Kno.e.sis Center Wright State University Dayton OH, USA.
Berlin SPARQL Benchmark (BSBM) Presented by: Nikhil Rajguru Christian Bizer and Andreas Schultz.
1 Ontology Query and Reasoning Payam Barnaghi Institute for Communication Systems (ICS) Faculty of Engineering and Physical Sciences University of Surrey.
Market Blended Insight Modeling propensity to buy with the Semantic Web ISWC 2008 Manuel Salvadores, Landong Zuo, SM Hazzaz Imtiaz, John Darlington, Nicholas.
Entity Recognition via Querying DBpedia ElShaimaa Ali.
Chapter 3 Querying RDF stores with SPARQL. Why an RDF Query Language? Why not use an XML query language? XML at a lower level of abstraction than RDF.
Publishing and Interacting with Linked Data Roberto Garcia, Josep Maria Brunetti, Antonio López-Muzás, Juan Manuel Gimeno, Rosa Gil WIMS’11 Conference,
© Copyright 2013 STI INNSBRUCK Linked Open Data Anna Fensel, Ioannis Stavrakantonakis,
KIT – University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association Institute of Applied Informatics.
-1- Philipp Heim, Thomas Ertl, Jürgen Ziegler Facet Graphs: Complex Semantic Querying Made Easy Philipp Heim 1, Thomas Ertl 1 and Jürgen Ziegler 2 1 Visualization.
Assigning Global Relevance Scores to DBpedia Facts Philipp Langer, Patrick Schulze, Stefan George, Tobias Metzke, Ziawasch Abedjan, Gjergji Kasneci DESWeb.
Lesley Charles November 23, 2009.
Boris Villazón-Terrazas, Ghislain Atemezing FI, UPM, EURECOM, Introduction to Linked Data.
Q2Semantic: A Lightweight Keyword Interface to Semantic Search Haofen Wang 1, Kang Zhang 1, Qiaoling Liu 1, Thanh Tran 2, and Yong Yu 1 1 Apex Lab, Shanghai.
Large-scale Linked Data Management Marko Grobelnik, Andreas Harth (Günter Ladwig), Dumitru Roman Big Linked Data Tutorial Semantic Days 2012.
1 A Framework for Measuring and Predicting the Impact of Routing Changes Ying Zhang Z. Morley Mao Jia Wang.
Semi-Automatic Quality Assessment of Linked Data without Requiring Ontology Saemi Jang, Megawati, Jiyeon Choi, and Mun Yong Yi KIRD, KAIST NLP&DBPEDIA.
DATA MINING WITH CLUSTERING AND CLASSIFICATION Spring 2007, SJSU Benjamin Lam.
Shridhar Bhalerao CMSC 601 Finding Implicit Relations in the Semantic Web.
Scalable Keyword Search on Large RDF Data. Abstract Keyword search is a useful tool for exploring large RDF datasets. Existing techniques either rely.
Semantic Publishing Benchmark Task Force Fourth TUC Meeting, Amsterdam, 03 April 2014.
Semantic Web Final Exam Review. Topics for Final Exam First exam material (~30%) Design Patterns and Map/Reduce (~20%) Inference / Restrictions (~10%)
Linked Data Profiling Andrejs Abele National University of Ireland, Galway Supervisor: Paul Buitelaar.
ОТ ТАКСОНОМИИ К ОНТОЛОГИИ ВЛАСТИ. Power Complexity © Folksonomy List Synonym Ring Taxonomy Thesaurus Ontology.
Chapter 3 Querying RDF stores with SPARQL
Prizms for Data Publication and Management Katie Chastain May 9, 2014.
GRIN: A Graph Based RDF Index Octavian Udrea 1 Andrea Pugliese 2 V. S. Subrahmanian 1 1 University of Maryland College Park 2 Università di Calabria.
GoRelations: an Intuitive Query System for DBPedia Lushan Han and Tim Finin 15 November 2011
Dmitry Mouromtsev, Aleksei Romanov, Dmitry Volchek and Fedor Kozlov Laboratory ITMO University, St. Petersburg, Russia “Metadata Extraction from.
When ontology and reality collide:
Information Organization: Overview
Forensics Mr. J. Levasseur.
Improving Data Discovery Through Semantic Search
Reading Report on Hybrid Question Answering System
Using Graph Summarization for Join-ahead Pruning in a Distributed RDF Store Sairam Gurajada (MPI Informatics, Germany), Stephan Seufert (MPI Informatics,
Maclaurin and Taylor Series; Power Series
YourDataStories: Transparency and Corruption Fighting through Data Interlinking and Visual Exploration Georgios Petasis1, Anna Triantafillou2, Eric Karstens3.
SPARQL + RDF Based on: Prof. Benny Kimelfled’s lecture notes
and Knowledge Graphs for Query Expansion Saeid Balaneshinkordan
Gong Cheng, Yanan Zhang, and Yuzhong Qu
Enriching Structured Knowledge with Open Information
The Nature of Probability and Statistics
2-1 Inductive Reasoning.
DBpedia 2014 Liang Zheng 9.22.
Semantic Annotation service
A Graph-Based Approach to Learn Semantic Descriptions of Data Sources
Khadija Elbedweihy, Stuart N. Wrigley, and Fabio Ciravegna
Danyun Xu, Gong Cheng*, Yuzhong Qu
This is a number line that starts at 0 and ends at 1
Entity Description Pattern Extraction and Their Usage in Entity Query
Common Core Vs Kansas Standards
Malik Magdon-Ismail, Konstantin Mertsalov, Mark Goldberg
Information Organization: Overview
BPaaS Evaluation Research Prototype
Template-based Question Answering over RDF Data
Linked Data Ryan McAlister.
Rome Hackathon results March 2019
Presentation transcript:

Statistical Knowledge Patterns: Identifying Synonymous Relations in Large Linked Datasets Ziqi Zhang, Anna Lisa Gentile, Eva Blomqvist, Isabelle Augenstein, Fabio Ciravegna

Motivation dbpedia:label rdfs:label dbpedia:name foaf:name dbpedia:lakeName

SKP Example

SKP Construction Property Subject-Object dbpedia:name lake1-Big Lake Dbpedia:Lake dbpedia:name Big Lake lake1 Property Subject-Object dbpedia:name lake1-Big Lake lake3-Sweet Lake dbpedia:label lake3-Sweet lake lake4-Good Lake dbpedia:lakeName lake2-Bad Lake dbpedia:label Big Lake lake2 dbpedia:lakeName Bad Lake dbpedia:label Sweet Lake lake3 dbpedia:lakeName Sweet Lake dbpedia:name Sweet Lake lake4 dbpedia:label Good Lake

Property Clustering Synonymity Triple Overlap Subject Agreement Cardinality Ratio dbpedia:name dbpedia:lakeName dbpedia:label

Evaluation Two sets of experiments Dataset SKP Observation Query Expansion Dataset DBpedia SPARQL endpoint 34 DBpedia classes from QALD1

SKP Observation Measurement Three methods for setting threshold #Property Fraction of triples covered Three methods for setting threshold Absolute threshold Certain fraction Normalized threshold

SKP Observation Absolute threshold Certain fraction Normalized threshold

Characteristics of the generated SKPs 78% of the properties are not defined in DBpedia ontology!

Using SKPs for Query Expansion For each property ri defined in reference ontology SELECT DISTINCT ?s ?o WHERE { ?s a Main_Concept_of_SKP. ?s ri ?o. }

Using SKPs for Query Expansion

Using SKPs for Query Expansion

Conclusion -Bottom-up & Data-oriented -Reduce the number of properties -Query Expansion

Thanks!