Brian S. Robinson, Juang Huang, Yang Hong, Kenneth H. Moberg 

Slides:



Advertisements
Similar presentations
Darren M Brown, Erkki Ruoslahti  Cancer Cell 
Advertisements

Bifocal Is a Downstream Target of the Ste20-like Serine/Threonine Kinase Misshapen in Regulating Photoreceptor Growth Cone Targeting in Drosophila  Wenjing.
Evolution of TNF Signaling Mechanisms
A Hedgehog-Responsive Region in the Drosophila Wing Disc Is Defined by Debra- Mediated Ubiquitination and Lysosomal Degradation of Ci  Ping Dai, Hiroshi.
The Salvador-Warts-Hippo Pathway Is Required for Epithelial Proliferation and Axis Specification in Drosophila  Carine Meignin, Ines Alvarez-Garcia, Ilan.
The Sterile 20-like Kinase Tao-1 Controls Tissue Growth by Regulating the Salvador- Warts-Hippo Pathway  Carole L.C. Poon, Jane I. Lin, Xiaomeng Zhang,
A Conserved Oligomerization Domain in Drosophila Bazooka/PAR-3 Is Important for Apical Localization and Epithelial Polarity  Richard Benton, Daniel St.
Volume 16, Issue 21, Pages (November 2006)
The DHHC Palmitoyltransferase Approximated Regulates Fat Signaling and Dachs Localization and Activity  Hitoshi Matakatsu, Seth S. Blair  Current Biology 
Ying Wang, Veit Riechmann  Current Biology 
Distinct Mechanisms of Apoptosis-Induced Compensatory Proliferation in Proliferating and Differentiating Tissues in the Drosophila Eye  Yun Fan, Andreas.
Kibra Is a Regulator of the Salvador/Warts/Hippo Signaling Network
The Cdc42/Par6/aPKC Polarity Complex Regulates Apoptosis-Induced Compensatory Proliferation in Epithelia  Stephen J. Warner, Hanako Yashiro, Gregory D.
Volume 25, Issue 1, Pages (January 2015)
Mutual Repression by Bantam miRNA and Capicua Links the EGFR/MAPK and Hippo Pathways in Growth Control  Héctor Herranz, Xin Hong, Stephen M. Cohen  Current.
Volume 18, Issue 21, Pages (November 2008)
Number of Nuclear Divisions in the Drosophila Blastoderm Controlled by Onset of Zygotic Transcription  Hung-wei Sung, Saskia Spangenberg, Nina Vogt, Jörg.
Volume 17, Issue 8, Pages (April 2007)
Volume 15, Issue 22, Pages (November 2005)
Volume 22, Issue 17, Pages (September 2012)
Yvonne Stahl, René H. Wink, Gwyneth C. Ingram, Rüdiger Simon 
Opposing Transcriptional Outputs of Hedgehog Signaling and Engrailed Control Compartmental Cell Sorting at the Drosophila A/P Boundary  Christian Dahmann,
Volume 14, Issue 11, Pages (June 2004)
Kyung-Ok Cho, Joshua Chern, Shayan Izaddoost, Kwang-Wook Choi  Cell 
Volume 15, Issue 9, Pages (May 2005)
Volume 23, Issue 3, Pages (February 2013)
Volume 10, Issue 6, Pages (June 2006)
Proteolysis of the Hedgehog Signaling Effector Cubitus interruptus Requires Phosphorylation by Glycogen Synthase Kinase 3 and Casein Kinase 1  Mary Ann.
Integrin Signaling Regulates Spindle Orientation in Drosophila to Preserve the Follicular- Epithelium Monolayer  Ana Fernández-Miñán, María D. Martín-Bermudo,
Helen Strutt, Mary Ann Price, David Strutt  Current Biology 
Volume 21, Issue 13, Pages (July 2011)
Volume 20, Issue 15, Pages (August 2010)
Volume 16, Issue 21, Pages (November 2006)
Volume 22, Issue 5, Pages (March 2012)
Darren M Brown, Erkki Ruoslahti  Cancer Cell 
Volume 18, Issue 8, Pages (April 2008)
Joanna Chen, Esther M. Verheyen  Current Biology 
The LRR Proteins Capricious and Tartan Mediate Cell Interactions during DV Boundary Formation in the Drosophila Wing  Marco Milán, Ulrich Weihe, Lidia.
Volume 18, Issue 10, Pages (May 2008)
Volume 19, Issue 18, Pages (September 2009)
Ying Wang, Veit Riechmann  Current Biology 
Volume 16, Issue 7, Pages (April 2006)
Propagation of Dachsous-Fat Planar Cell Polarity
Julian C. Boggiano, Pamela J. Vanderzalm, Richard G. Fehon 
Julien Colombani, Cédric Polesello, Filipe Josué, Nicolas Tapon 
Volume 25, Issue 6, Pages (June 2013)
Volume 16, Issue 3, Pages (March 2009)
A Role of Receptor Notch in Ligand cis-Inhibition in Drosophila
Cell Competition Drives the Formation of Metastatic Tumors in a Drosophila Model of Epithelial Tumor Formation  Teresa Eichenlaub, Stephen M. Cohen, Héctor.
Volume 15, Issue 8, Pages (April 2005)
Volume 9, Issue 5, Pages (November 2005)
Volume 22, Issue 12, Pages (June 2012)
Drosophila ASPP Regulates C-Terminal Src Kinase Activity
Volume 14, Issue 3, Pages (March 2008)
Modes of Protein Movement that Lead to the Asymmetric Localization of Partner of Numb during Drosophila Neuroblast Division  Bingwei Lu, Larry Ackerman,
Justin P. Kumar, Kevin Moses  Cell 
The Hippo Pathway Regulates the bantam microRNA to Control Cell Proliferation and Apoptosis in Drosophila  Barry J. Thompson, Stephen M. Cohen  Cell 
Volume 17, Issue 8, Pages (April 2007)
Amy Brittle, Chloe Thomas, David Strutt  Current Biology 
The Cell Adhesion Molecule Echinoid Functions as a Tumor Suppressor and Upstream Regulator of the Hippo Signaling Pathway  Tao Yue, Aiguo Tian, Jin Jiang 
The LRR Proteins Capricious and Tartan Mediate Cell Interactions during DV Boundary Formation in the Drosophila Wing  Marco Milán, Ulrich Weihe, Lidia.
The sterol-sensing domain of Patched protein seems to control Smoothened activity through Patched vesicular trafficking  Verónica Martı́n, Graciela Carrillo,
Volume 26, Issue 8, Pages (April 2016)
Volume 25, Issue 6, Pages (June 2013)
F. Christian Bennett, Kieran F. Harvey  Current Biology 
Mask Proteins Are Cofactors of Yorkie/YAP in the Hippo Pathway
Salvador-Warts-Hippo Signaling Promotes Drosophila Posterior Follicle Cell Maturation Downstream of Notch  Cédric Polesello, Nicolas Tapon  Current Biology 
Drosophila Schip1 Links Expanded and Tao-1 to Regulate Hippo Signaling
Volume 7, Issue 2, Pages (February 2001)
Evolution of TNF Signaling Mechanisms
Presentation transcript:

Crumbs Regulates Salvador/Warts/Hippo Signaling in Drosophila via the FERM-Domain Protein Expanded  Brian S. Robinson, Juang Huang, Yang Hong, Kenneth H. Moberg  Current Biology  Volume 20, Issue 7, Pages 582-590 (April 2010) DOI: 10.1016/j.cub.2010.03.019 Copyright © 2010 Elsevier Ltd Terms and Conditions

Figure 1 Overgrowth Driven by the crbi Transgene Is Sensitive to the Dose of SWH Pathway Genes (A–C) Images and overlays of transgenic en>crbi and control en>+ (A), en>crbi and en>crbi,ykiB5/+ (B), and en>crbi and en>crbi,sav (C) wings. (D and E) Phalloidin-FITC staining of en>crbi and en>crbi,sav larval wings. (F) Posterior compartment ratio (PCR) in the indicated genotypes (minimum of 10 wings per genotype; ∗p < 0.05 compared to en>crbi wings). Current Biology 2010 20, 582-590DOI: (10.1016/j.cub.2010.03.019) Copyright © 2010 Elsevier Ltd Terms and Conditions

Figure 2 crbi Elevates Yki Activity (A–C) α-β-gal staining or GFP fluorescence in wing discs carrying ex-lacZ (A), ban-GFP (B), or diap1-lacZ (C) in the background of en>+ (Aa–Ca) or en>crbi (Ab–Cb). Arrows in (Ab) and (Cb) highlight elevated ex-lacZ and diap1-lacZ expression. (D) α-Wg staining in en>crbi wing discs (posterior is to the right of dashed line). (E) Fluorescence-activated cell sorting analysis of en>GFP (black) and transgenic en>crbi,GFP (blue) wing discs. (F) Costaining for Yki (blue) and HP1 (nuclei; red) in en>crbi,GFP discs (posterior is to the right of dotted line). Current Biology 2010 20, 582-590DOI: (10.1016/j.cub.2010.03.019) Copyright © 2010 Elsevier Ltd Terms and Conditions

Figure 3 crbi Downregulates Ex Levels (Aa–Ad) Lateral section of a en>crbi,GFP wing disc costained for Dlg (red) and Ex (blue). Dotted line denotes the anterior/posterior boundary. (B) Images and overlays of en>crbi and en>crbi,ex wings. (C) PCR in the indicated genotypes. (D) Immunoblot of Ex in en>+ and en>crbi wing discs. Arrowhead denotes band corresponding to endogenous Ex based on comigration with overexpressed Ex (not shown). Asterisk indicates nonspecific band. The bottom lane is α-β-tub loading control. (E) Immunoblot of HA-Ex in Crb8F105-expressing cells treated with MG132 (lane 4) or chloroquine (lane 5). (F) Corresponding α-HA, α-VSV-G, and α-β-tub immunoblots of S2 cells expressing HA-Ex from the pAct-HA-Ex plasmid (lanes 2–4) and VSV-G-tagged forms of either crbi (lane 3) or crb8F105 (lane 4) from the pMT plasmid. (G) Lateral images of Ex:GFP in the posterior region of the wing pouch in the indicated genotypes. Current Biology 2010 20, 582-590DOI: (10.1016/j.cub.2010.03.019) Copyright © 2010 Elsevier Ltd Terms and Conditions

Figure 4 The Crb Juxtamembrane FERM-Binding Motif Controls Ex Levels and Yki Activity (A–F) Paired light-microscopic images (Aa–Fa) and confocal images of α-β-gal staining to detect activity of the ex-lacZ transgene (Ab–Db and Fb) or diap1-lacZ (Eb) in the indicated genotypes. (G) PCR values in the indicated genotypes. ∗p < 0.05 compared to en>crbi. (H and I) α-Ex (blue) staining in en>crb-PBM,GFP (H) and en>crb-JM,GFP (I) wing discs. Dotted line marks the anterior/posterior boundary (posterior is to the right). (J) Cartoon of crb transgenes. Signal peptide (SP), Myc tag (myc), transmembrane domain (TM), juxtamembrane FERM-binding motif (JM), PDZ-binding motif (PBM), and amino acid substitutions are indicated (modeled after [40]). Current Biology 2010 20, 582-590DOI: (10.1016/j.cub.2010.03.019) Copyright © 2010 Elsevier Ltd Terms and Conditions

Figure 5 Effect of crb Loss on Ex in Disc Cells Confocal images of crb11A22 (A–D and I–K), crb8F105 (E and F), or crbY10AP12AE16A (G and H) clones in the eye (A–I) or wing (J and K) stained for Crb (A, E, and G) or Ex (B, C, F, and H–K). (B) and (C) are apical and basal planes of the same disc. Arrows in (I) denote excess Ex in crb11A22 cells that fails to localize apically. Disc in (I) is imaged through the apical portion of epithelium; disc in (J) is imaged through the entire epithelium. (D) shows α-β-gal staining to detect activity of the ex-lacZ transgene in crb11A22 eye clones. Current Biology 2010 20, 582-590DOI: (10.1016/j.cub.2010.03.019) Copyright © 2010 Elsevier Ltd Terms and Conditions

Figure 6 crb Alleles Interact with ex and Elevate DIAP1 Expression Posterior to the Furrow (A–C) Images of crb11A22 (A and B) or crbY10AP12AE16A (lacking GFP, C) clones in larval eye discs stained with α-β-gal to detect diap1-lacZ (red, A) or α-DIAP1 (red, B and C). Arrowheads denote position of the morphogenetic furrow (MF) (posterior is to the left). Dotted line in (Ab) highlights a crb clone that projects posterior to the MF and expresses elevated diap1-lacZ. (D and E) Optical overlay (D) and adult wing size (E) of the indicated genotypes. ∗p < 1.5 × 10−7 compared to ex697 wings. Current Biology 2010 20, 582-590DOI: (10.1016/j.cub.2010.03.019) Copyright © 2010 Elsevier Ltd Terms and Conditions