Chapter 6 Confidence Intervals.

Slides:



Advertisements
Similar presentations
Chapter 6 Confidence Intervals.
Advertisements

Estimating a Population Variance
Chap 8-1 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chapter 8 Estimation: Single Population Statistics for Business and Economics.
Confidence Interval Estimation of Population Mean, μ, when σ is Unknown Chapter 9 Section 2.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 7-1 Introduction to Statistics: Chapter 8 Estimation.
Chapter 8 Estimation: Single Population
Chapter Topics Confidence Interval Estimation for the Mean (s Known)
Chapter 7 Estimation: Single Population
Chapter 6 Confidence Intervals.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by.
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 8-1 Chapter 8 Confidence Interval Estimation Business Statistics, A First Course.
Confidence Intervals for the Mean (σ Unknown) (Small Samples)
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 7-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter.
Confidence Interval Estimation
Confidence Intervals Chapter 6. § 6.1 Confidence Intervals for the Mean (Large Samples)
Section 8.2 Estimating  When  is Unknown
SECTION 6.4 Confidence Intervals for Variance and Standard Deviation Larson/Farber 4th ed 1.
Chapter 6 Confidence Intervals.
Chapter 6 Confidence Intervals 1 Larson/Farber 4th ed.
7.2 Confidence Intervals When SD is unknown. The value of , when it is not known, must be estimated by using s, the standard deviation of the sample.
6 Chapter Confidence Intervals © 2012 Pearson Education, Inc.
© 2002 Thomson / South-Western Slide 8-1 Chapter 8 Estimation with Single Samples.
6 Chapter Confidence Intervals © 2012 Pearson Education, Inc.
Confidence Intervals Chapter 6. § 6.1 Confidence Intervals for the Mean (Large Samples)
Confidence Intervals 1 Chapter 6. Chapter Outline Confidence Intervals for the Mean (Large Samples) 6.2 Confidence Intervals for the Mean (Small.
8 Chapter Estimation © 2012 Pearson Education, Inc.
Unit 7 Section : Confidence Intervals for the Mean (σ is unknown)  When the population standard deviation is unknown and our sample is less than.
CHAPTER SIX Confidence Intervals.
Unit 6 Confidence Intervals If you arrive late (or leave early) please do not announce it to everyone as we get side tracked, instead send me an .
Chap 7-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition Chapter 7 Estimating Population Values.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc. Chap 8-1 Confidence Interval Estimation.
Copyright © 2015, 2012, and 2009 Pearson Education, Inc. 1 Section 6.1 Confidence Intervals for the Mean (  Known)
CHAPTER SIX Confidence Intervals.
Confidence Intervals for the Mean (Small Samples) 1 Larson/Farber 4th ed.
Chap 7-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition Chapter 7 Estimating Population Values.
Statistics for Business and Economics 8 th Edition Chapter 7 Estimation: Single Population Copyright © 2013 Pearson Education, Inc. Publishing as Prentice.
Section 6.1 Confidence Intervals for the Mean (Large Samples) Larson/Farber 4th ed.
Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 7-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter.
Statistics for Business and Economics 8 th Edition Chapter 7 Estimation: Single Population Copyright © 2013 Pearson Education, Inc. Publishing as Prentice.
Copyright © 2015, 2012, and 2009 Pearson Education, Inc. 1 Section 6.2 Confidence Intervals for the Mean (  Unknown)
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Section 7.4: Estimation of a population mean   is not known  This section.
Section 6.2 Confidence Intervals for the Mean (Small Samples) Larson/Farber 4th ed.
Chapter Outline 6.1 Confidence Intervals for the Mean (Large Samples) 6.2 Confidence Intervals for the Mean (Small Samples) 6.3 Confidence Intervals for.
ESTIMATION OF THE MEAN. 2 INTRO :: ESTIMATION Definition The assignment of plausible value(s) to a population parameter based on a value of a sample statistic.
Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc. Chap 8-1 Chapter 8 Confidence Interval Estimation Business Statistics: A First Course 5 th Edition.
Section 6-1 – Confidence Intervals for the Mean (Large Samples) Estimating Population Parameters.
Confidence Intervals. Point Estimate u A specific numerical value estimate of a parameter. u The best point estimate for the population mean is the sample.
Copyright © 2015, 2012, and 2009 Pearson Education, Inc. 1 Chapter Confidence Intervals 6.
SWBAT: -Interpret the t-distribution and use a t- distribution table -Construct a confidence interval when n
Chapter Confidence Intervals 1 of 31 6  2012 Pearson Education, Inc. All rights reserved.
Section 6.2 Confidence Intervals for the Mean (Small Samples) © 2012 Pearson Education, Inc. All rights reserved. 1 of 83.
Chapter 6 Confidence Intervals 1 Larson/Farber 4th ed.
Chapter 8 Confidence Intervals Copyright © 2014 by The McGraw-Hill Companies, Inc. All rights reserved.McGraw-Hill/Irwin.
Chapter 8 Confidence Interval Estimation Statistics For Managers 5 th Edition.
Chapter 6 Confidence Intervals.
Confidence Intervals and Sample Size
Chapter 6 Confidence Intervals.
Chapter 6 Confidence Intervals.
Section 6-4 – Confidence Intervals for the Population Variance and Standard Deviation Estimating Population Parameters.
Elementary Statistics
Confidence Interval Estimation
Chapter 6 Confidence Intervals.
Chapter 6 Confidence Intervals.
ESTIMATION OF THE MEAN AND PROPORTION
Chapter 6 Confidence Intervals
Elementary Statistics: Picturing The World
Estimating a Population Mean:  Not Known
Chapter 6 Confidence Intervals.
Chapter 6 Confidence Intervals.
Presentation transcript:

Chapter 6 Confidence Intervals

Chapter Outline 6.1 Confidence Intervals for the Mean ( Known) 6.2 Confidence Intervals for the Mean ( Unknown) 6.3 Confidence Intervals for Population Proportions 6.4 Confidence Intervals for Variance and Standard Deviation .

Confidence Intervals for the Mean ( Unknown) Section 6.2 Confidence Intervals for the Mean ( Unknown) .

Section 6.2 Objectives How to interpret the t-distribution and use a t-distribution table How to construct and interpret confidence intervals for a population mean when  is not known .

The t-Distribution When the population standard deviation is unknown, the sample size is less than 30, and the random variable x is approximately normally distributed, it follows a t-distribution. Critical values of t are denoted by tc. .

Properties of the t-Distribution The mean, median, and mode of the t-distribution are equal to zero. The t-distribution is bell shaped and symmetric about the mean. The total area under a t-curve is 1 or 100%. The tails in the t-distribution are “thicker” than those in the standard normal distribution. The standard deviation of the t-distribution varies with the sample size, but it is greater than 1. .

Properties of the t-Distribution The t-distribution is a family of curves, each determined by a parameter called the degrees of freedom. The degrees of freedom are the number of free choices left after a sample statistic such as is calculated. When you use a t-distribution to estimate a population mean, the degrees of freedom are equal to one less than the sample size. d.f. = n – 1 Degrees of freedom .

Properties of the t-Distribution As the degrees of freedom increase, the t-distribution approaches the normal distribution. After 30 d.f., the t-distribution is very close to the standard normal z-distribution. d.f. = 5 d.f. = 2 t Standard normal curve .

Example: Finding Critical Values of t Find the critical value tc for a 95% confidence when the sample size is 15. Solution: d.f. = n – 1 = 15 – 1 = 14 Table 5: t-Distribution tc = 2.145 .

Solution: Critical Values of t 95% of the area under the t-distribution curve with 14 degrees of freedom lies between t = +2.145. t -tc = -2.145 tc = 2.145 c = 0.95 .

Confidence Intervals for the Population Mean A c-confidence interval for the population mean μ The probability that the confidence interval contains μ is c. .

Confidence Intervals and t-Distributions In Words In Symbols Verify that  is not known, the sample is random, and the population is normally distributed or n  30. Identify the sample statistics n, , and s. .

Confidence Intervals and t-Distributions In Words In Symbols Identify the degrees of freedom, the level of confidence c, and the critical value tc. d.f. = n – 1; Use Table 5. Find the margin of error E. Find the left and right endpoints and form the confidence interval. Left endpoint: Right endpoint: Interval: .

Example: Constructing a Confidence Interval You randomly select 16 coffee shops and measure the temperature of the coffee sold at each. The sample mean temperature is 162.0ºF with a sample standard deviation of 10.0ºF. Find the 95% confidence interval for the mean temperature. Assume the temperatures are approximately normally distributed. Solution: Use the t-distribution (n < 30, σ is unknown, temperatures are approximately distributed.) .

Solution: Constructing a Confidence Interval n =16, x = 162.0 s = 10.0 c = 0.95 df = n – 1 = 16 – 1 = 15 Critical Value Table 5: t-Distribution tc = 2.131 .

Solution: Constructing a Confidence Interval Margin of error: Confidence interval: Left Endpoint: Right Endpoint: 156.7 < μ < 167.3 .

Solution: Constructing a Confidence Interval 156.7 < μ < 167.3 Point estimate 156.7 162.0 167.3 ( ) • With 95% confidence, you can say that the mean temperature of coffee sold is between 156.7ºF and 167.3ºF. .

Normal or t-Distribution? .

Example: Normal or t-Distribution? You randomly select 25 newly constructed houses. The sample mean construction cost is $181,000 and the population standard deviation is $28,000. Assuming construction costs are normally distributed, should you use the normal distribution, the t-distribution, or neither to construct a 95% confidence interval for the population mean construction cost? Solution: Use the normal distribution (the population is normally distributed and the population standard deviation is known) .

Section 6.2 Summary Interpreted the t-distribution and used a t-distribution table Constructed and interpreted confidence intervals for a population mean when  is not known .