Chapter 20 Opener Immune complexity in an invertebrate Evolution-2e-Chapter-20-Opener.jpg
Figure 20.1 Continual acquisition of microRNA families through metazoan evolution Evolution-2e-Fig-20-01-0.jpg
Figure 20.2 Phylogenetic distribution of introns Evolution-2e-Fig-20-02-0.jpg
Figure 20.2 Phylogenetic distribution of introns (Part 1) Evolution-2e-Fig-20-02-1.jpg
Figure 20.2 Phylogenetic distribution of introns (Part 2) Evolution-2e-Fig-20-02-2.jpg
Figure 20.3 Conservation and evolution of a novel SINE in vertebrates Evolution-2e-Fig-20-03-0.jpg
Figure 20.3 Conservation and evolution of a novel SINE in vertebrates (Part 1) Evolution-2e-Fig-20-03-1.jpg
Figure 20.3 Conservation and evolution of a novel SINE in vertebrates (Part 2) Evolution-2e-Fig-20-03-2.jpg
Figure 20.4 Age distribution of retroelements in the human genome Evolution-2e-Fig-20-04-0.jpg
Figure 20.5 Immune receptor molecules in the genome of the purple sea urchin (Strongylocentrotus purpuratus) Evolution-2e-Fig-20-05-0.jpg
Figure 20.6 Extent of codon bias in 12 Drosophila species Evolution-2e-Fig-20-06-0.jpg
Figure 20.6 Extent of codon bias in 12 Drosophila species Evolution-2e-Fig-20-06-0R.jpg
Figure 20.7 Relative rates of nonsynonymous substitution in protein-coding genes of the 12 Drosophila species with fully sequenced genomes Evolution-2e-Fig-20-07-0.jpg
Figure 20.8 A gene tree for lysozyme provides phylogenetic evidence for molecular convergence in primate, ruminant, and avian lysozymes Evolution-2e-Fig-20-08-0.jpg
Figure 20.9 Phylogenetic evidence for lateral gene transfer (LGT) from Archaea to the eukaryotic protist Entamoeba histolytica Evolution-2e-Fig-20-09-0.jpg
Figure 20.9 Phylogenetic evidence for lateral gene transfer (LGT) from Archaea to the eukaryotic protist Entamoeba histolytica Evolution-2e-Fig-20-09-0R.jpg
Figure 20.10 A polytene chromosome of Drosophila ananassae (red) with evidence of integration of a laterally transferred gene from the intracellular symbiont Wolbachia (green) Evolution-2e-Fig-20-10-0.jpg
Figure 20.11 Origin of a new yeast gene from noncoding DNA Evolution-2e-Fig-20-11-0.jpg
Figure 20.12 Evolution and conservation of domains in diverse proteins Evolution-2e-Fig-20-12-0.jpg
Figure 20.13 Protein domains bind antigens in human immunoglobulin Evolution-2e-Fig-20-13-0.jpg
Figure 20.13 Protein domains bind antigens in human immunoglobulin (Part 1) Evolution-2e-Fig-20-13-1.jpg
Figure 20.13 Protein domains bind antigens in human immunoglobulin (Part 2) Evolution-2e-Fig-20-13-2.jpg
Figure 20.14 Origin of a new Drosophila gene, jingwei, via retrotransposition of a pre-existing gene into an intron of Ymp (yellow-emperor) to recruit new exons Evolution-2e-Fig-20-14-0.jpg
Figure 20.15 The evolution of AFGP genes of Antarctic notothenioid fishes Evolution-2e-Fig-20-15-0.jpg
Figure 20.15 The evolution of AFGP genes of Antarctic notothenioid fishes (Part 1) Evolution-2e-Fig-20-15-1.jpg
Figure 20.15 The evolution of AFGP genes of Antarctic notothenioid fishes (Part 2) Evolution-2e-Fig-20-15-2.jpg
Figure 20.16 Amplification of the DUF1220 domain in the human lineage Evolution-2e-Fig-20-16-0.jpg
Figure 20.16 Amplification of the DUF1220 domain in the human lineage (Part 1) Evolution-2e-Fig-20-16-1.jpg
Figure 20.16 Amplification of the DUF1220 domain in the human lineage (Part 2) Evolution-2e-Fig-20-16-2.jpg
Figure 20.17 Distribution of the number of paralogs in the complete genomes of five species of yeast Evolution-2e-Fig-20-17-0.jpg
Figure 20.18 Ancient origin of cadherin genes as revealed in the genome of the choanoflagellate Monosiga brevicollis Evolution-2e-Fig-20-18-0.jpg
Figure 20.18 Ancient origin of cadherin genes as revealed in the genome of the choanoflagellate Monosiga brevicollis (Part 1) Evolution-2e-Fig-20-18-1.jpg
Figure 20.18 Ancient origin of cadherin genes as revealed in the genome of the choanoflagellate Monosiga brevicollis (Part 2) Evolution-2e-Fig-20-18-2.jpg
Figure 20.19 Use of age distribution of gene duplication events to infer whole-genome duplications Evolution-2e-Fig-20-19-0.jpg
Figure 20.20 Block duplication Evolution-2e-Fig-20-20-0.jpg
Figure 20.20 Block duplication Evolution-2e-Fig-20-20-0R.jpg
Figure 20.21 Evolution of species-specific differences in coevolving lysin and VERL proteins Evolution-2e-Fig-20-21-0.jpg
Figure 20.21 Evolution of species-specific differences in coevolving lysin and VERL proteins (Part 1) Evolution-2e-Fig-20-21-1.jpg
Figure 20.21 Evolution of species-specific differences in coevolving lysin and VERL proteins (Part 2) Evolution-2e-Fig-20-21-2.jpg
Figure 20.22 Evidence for localized gene conversion and concerted evolution in the primate globin gene family Evolution-2e-Fig-20-22-0.jpg
Figure 20.23 Phylogenetic consequences of duplication, speciation, and gene conversion in gene families Evolution-2e-Fig-20-23-0.jpg
Figure 20.24 The DDC model of gene duplication as illustrated by Hox genes Evolution-2e-Fig-20-24-0.jpg
Figure 20.24 The DDC model of gene duplication as illustrated by Hox genes (Part 1) Evolution-2e-Fig-20-24-1.jpg
Figure 20.24 The DDC model of gene duplication as illustrated by Hox genes (Part 2) Evolution-2e-Fig-20-24-2.jpg