Effects of Geometric Parameters on Swimming of Micro Organisms with Single Helical Flagellum in Circular Channels  Alperen Acemoglu, Serhat Yesilyurt 

Slides:



Advertisements
Similar presentations
Cell Traction Forces Direct Fibronectin Matrix Assembly Christopher A. Lemmon, Christopher S. Chen, Lewis H. Romer Biophysical Journal Volume 96, Issue.
Advertisements

Nanoparticles as Fluorescence Labels: Is Size All that Matters?
Volume 105, Issue 12, Pages (December 2013)
Multi-Image Colocalization and Its Statistical Significance
Volume 107, Issue 2, Pages (July 2014)
Kinetic Hysteresis in Collagen Folding
Goran Žagar, Patrick R. Onck, Erik van der Giessen  Biophysical Journal 
Dejun Lin, Alan Grossfield  Biophysical Journal 
Peter J. Mulligan, Yi-Ju Chen, Rob Phillips, Andrew J. Spakowitz 
Bacterial Motility Reveals Unknown Molecular Organization
M. Maraldi, C. Valero, K. Garikipati  Biophysical Journal 
SAXS versus FRET: A Matter of Heterogeneity?
Volume 107, Issue 11, Pages (December 2014)
Composition Fluctuations in Lipid Bilayers
Lara Scharrel, Rui Ma, René Schneider, Frank Jülicher, Stefan Diez 
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Nathan L. Hendel, Matthew Thomson, Wallace F. Marshall 
MunJu Kim, Katarzyna A. Rejniak  Biophysical Journal 
Volume 102, Issue 11, Pages (June 2012)
He Meng, Johan Bosman, Thijn van der Heijden, John van Noort 
Volume 111, Issue 2, Pages (July 2016)
On the Origin of Kinesin Limping
Serapion Pyrpassopoulos, Henry Shuman, E. Michael Ostap 
Theoretical and Computational Investigation of Flagellin Translocation and Bacterial Flagellum Growth  David E. Tanner, Wen Ma, Zhongzhou Chen, Klaus.
Volume 104, Issue 3, Pages (February 2013)
Volume 106, Issue 6, Pages (March 2014)
An Equilibrium Model for the Combined Effect of Macromolecular Crowding and Surface Adsorption on the Formation of Linear Protein Fibrils  Travis Hoppe,
Francesca Pennacchietti, Travis J. Gould, Samuel T. Hess 
Geometric Asymmetry Induces Upper Limit of Mitotic Spindle Size
J. Christof M. Gebhardt, Zeynep Ökten, Matthias Rief 
Taeyoon Kim, Margaret L. Gardel, Ed Munro  Biophysical Journal 
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Emergent Global Contractile Force in Cardiac Tissues
SAXS-Oriented Ensemble Refinement of Flexible Biomolecules
Nathan L. Hendel, Matthew Thomson, Wallace F. Marshall 
Paolo Mereghetti, Razif R. Gabdoulline, Rebecca C. Wade 
Strongly Accelerated Margination of Active Particles in Blood Flow
Kinetic Hysteresis in Collagen Folding
Teresa Ruiz-Herrero, Michael F. Hagan  Biophysical Journal 
Protein Collective Motions Coupled to Ligand Migration in Myoglobin
Volume 107, Issue 11, Pages (December 2014)
Volume 108, Issue 6, Pages (March 2015)
Mechanical Control of Bacterial Cell Shape
Irina V. Dobrovolskaia, Gaurav Arya  Biophysical Journal 
Lipid Bilayer Pressure Profiles and Mechanosensitive Channel Gating
Hung-Yu Chang, Xuejin Li, George Em Karniadakis  Biophysical Journal 
Jonathan E. Hiorns, Oliver E. Jensen, Bindi S. Brook 
Toshinori Namba, Masatoshi Nishikawa, Tatsuo Shibata 
Volume 109, Issue 2, Pages (July 2015)
Robust Driving Forces for Transmembrane Helix Packing
Multi-Image Colocalization and Its Statistical Significance
Phosphatase Specificity and Pathway Insulation in Signaling Networks
Volume 108, Issue 10, Pages (May 2015)
Nobuhiko Watari, Ronald G. Larson  Biophysical Journal 
Volume 113, Issue 12, Pages (December 2017)
Volume 100, Issue 6, Pages (March 2011)
Systems Biophysics: Multiscale Biophysical Modeling of Organ Systems
The Role of Network Architecture in Collagen Mechanics
A New Angle on Microscopic Suspension Feeders near Boundaries
Frank T.M. Nguyen, Michael D. Graham  Biophysical Journal 
Molecular Structure of Membrane Tethers
Anil K. Dasanna, Christine Lansche, Michael Lanzer, Ulrich S. Schwarz 
Volume 114, Issue 6, Pages (March 2018)
Paolo Mereghetti, Razif R. Gabdoulline, Rebecca C. Wade 
Malin Persson, Elina Bengtsson, Lasse ten Siethoff, Alf Månsson 
Patrick J. Fleming, Karen G. Fleming  Biophysical Journal 
Volume 98, Issue 4, Pages (February 2010)
Quantitative Modeling and Optimization of Magnetic Tweezers
Jérémie Barral, Frank Jülicher, Pascal Martin  Biophysical Journal 
Volume 98, Issue 3, Pages (February 2010)
Presentation transcript:

Effects of Geometric Parameters on Swimming of Micro Organisms with Single Helical Flagellum in Circular Channels  Alperen Acemoglu, Serhat Yesilyurt  Biophysical Journal  Volume 106, Issue 7, Pages 1537-1547 (April 2014) DOI: 10.1016/j.bpj.2014.01.047 Copyright © 2014 Biophysical Society Terms and Conditions

Figure 1 Parameters of the cell geometry; description of the parameters are shown in Table 1. To see this figure in color, go online. Biophysical Journal 2014 106, 1537-1547DOI: (10.1016/j.bpj.2014.01.047) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 2 Ratio of the swimming velocity and the body rotation rate: measurements (blue) and BEM calculations (green) reported in Goto et al. (7), CFD results (red) for V. algino species reported in Goto et al. (7) and labeled A to G. To see this figure in color, go online. Biophysical Journal 2014 106, 1537-1547DOI: (10.1016/j.bpj.2014.01.047) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 3 Flagellar torque normalized by the body rotation rate, T/Ω [pN-μm-s]. (a) CFD calculations (blue), BEM calculations (red) reported by Goto et al. (7). (b) Effect of the channel radius, Rch [μm], on the flagellar torque, T [fN-nm]. To see this figure in color, go online. Biophysical Journal 2014 106, 1537-1547DOI: (10.1016/j.bpj.2014.01.047) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 4 Surface plot of the stroke, Usw/f [μm], as a function of the wavelength and the length of the tail for (a) narrow channel (Rch/r = 3) and (b) wide channel (Rch/r = 13.5). Black circles represent the loci of maximum values of the stroke for each tail length. Solid squares represent the maximum values for all computations. (c) Usw/f [μm] as a function of the normalized channel radius, Rch/r, for different tail lengths and the fixed wavelength (λ/s = 3). (d) Usw/f [μm] as a function of the channel radius, Rch/r, for different wavelengths and the fixed tail length (L/s = 6). To see this figure in color, go online. Biophysical Journal 2014 106, 1537-1547DOI: (10.1016/j.bpj.2014.01.047) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 5 Surface plots of the power efficiency of swimming, η, as a function of the normalized wavelength and the normalized tail length for (a) Rch/r = 3, and (b) Rch/r = 13.5. Black circles are the loci of maximum values for normalized tail lengths equal to 2, 3, 4, 6, and 8. Solid squares are the locations of the global maxima. Efficiency plots as function of the normalized channel radius for (c) a fixed wavelength, λ/s = 3, and (d) for fixed tail length L/s = 3. To see this figure in color, go online. Biophysical Journal 2014 106, 1537-1547DOI: (10.1016/j.bpj.2014.01.047) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 6 Drag force on the spheroid head, Fbody [fN], as a function of the normalized channel radius for (a) the fixed wavelength, λ/s = 3, and (b) tail length, L/s = 6. To see this figure in color, go online. Biophysical Journal 2014 106, 1537-1547DOI: (10.1016/j.bpj.2014.01.047) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 7 Flagellar torque, T [pN-nm], as a function of the normalized channel radius for (a) the fixed wavelength, λ/s = 3, and (b) tail length, L/s = 6. To see this figure in color, go online. Biophysical Journal 2014 106, 1537-1547DOI: (10.1016/j.bpj.2014.01.047) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 8 Magnitude of the lateral stroke, Vlateral/f [μm], is plotted as a function of the normalized channel radius, Rch/r, for different wavelengths and a fixed tail length, L/s = 6. To see this figure in color, go online. Biophysical Journal 2014 106, 1537-1547DOI: (10.1016/j.bpj.2014.01.047) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 9 Magnitude of the lateral stroke, Vlateral/f [μm], as a function of Nλ for fixed channel radius, Rch/r = 4, and tail length, L/s = 6. To see this figure in color, go online. Biophysical Journal 2014 106, 1537-1547DOI: (10.1016/j.bpj.2014.01.047) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 10 (a) Wobbling rate of the bacterium with respect to the normalized radius of the channel, Rch/r, for λ/s = 3 and L/s = 2 (blue plus signs), 3 (green squares), 4 (red left-triangles), 6 (cyan stars) and 8 (magenta circles). (b) Relationship between wobbling rate and tail length for wide channels (Rch/r = 13), blue circles represent the wobbling rates. To see this figure in color, go online. Biophysical Journal 2014 106, 1537-1547DOI: (10.1016/j.bpj.2014.01.047) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 11 The stroke, Usw/f [μm], as a function of the normalized channel radius, Rch/r, and the normalized tail length, L/s, and for (a) Rtail/r = 0.063; (b) Rtail/r = 0.126; (c) Rtail/r = 0.189; (d) Rtail/r = 0.252; and (e) Rtail/r = 0.315. To see this figure in color, go online. Biophysical Journal 2014 106, 1537-1547DOI: (10.1016/j.bpj.2014.01.047) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 12 The stroke, Usw/f [μm], as a function of the normalized channel radius, Rch/r, for the normalized tail radius, Rtail/r, values varying between 0.063 and 0.315, and for (a) L/s = 2; (b) L/s = 3; (c) L/s = 4; (d) L/s = 6; and (e) L/s = 8. To see this figure in color, go online. Biophysical Journal 2014 106, 1537-1547DOI: (10.1016/j.bpj.2014.01.047) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 13 The efficiency as a function of the normalized channel radius, Rch/r, for the normalized tail radius, Rtail/r, values varying between 0.063 and 0.315, and for (a) L/s = 2; (b) L/s = 3; (c) L/s = 4; (d) L/s = 6; and (e) L/s = 8. To see this figure in color, go online. Biophysical Journal 2014 106, 1537-1547DOI: (10.1016/j.bpj.2014.01.047) Copyright © 2014 Biophysical Society Terms and Conditions