Closing loopholes in Bell tests of local realism Workshop Quantum Physics and the Nature of Reality International Academy Traunkirchen, Austria 22 November.

Slides:



Advertisements
Similar presentations
1 Taoufik AMRI. Overview 3 Chapter II Quantum Protocols Chapter III Quantum States and Propositions Chapter VI Detector of « Schrödingers Cat » States.
Advertisements

Bell violation with entangled photons and without the fair-sampling assumption Foundations of Physics 2013 LMU Munich, Germany 30 July 2013 Johannes Kofler.
Platonic Love at a Distance: the EPR paradox revisited arXiv: arXiv: Howard Wiseman, Steve Jones, (Eric Cavalcanti), Dylan Saunders,
QCRYPT 2011, Zurich, September 2011 Lluis Masanes 1, Stefano Pironio 2 and Antonio Acín 1,3 1 ICFO-Institut de Ciencies Fotoniques, Barcelona 2 Université.
Vlatko Vedral Oxford and Singapore Extreme nonlocality with a single photon.
Tony Short University of Cambridge (with Sabri Al-Safi – PRA 84, (2011))
Experiments thought to prove non – locality may be artifacts Karl Otto Greulich. Fritz Lipmann Institute Beutenbergstr. 11 D Jena Entanglement, the.
1 The Feasibility of Testing LHVTs in High Energy Physics 李军利 中国科学院 研究生院 桂林 In corporation with 乔从丰 教授 Phys.Rev. D74,076003, (2006)
1 quantum teleportation David Riethmiller 28 May 2007.
Ilja Gerhardt QUANTUM OPTICS CQT GROUP Ilja Gerhardt, Matthew P. Peloso, Caleb Ho, Antía Lamas-Linares and Christian Kurtsiefer Entanglement-based Free.
Blaylock - Clark University 2/17/10 Wringing John Bell vocabulary the EPR paradox Bell’s theorem Bell’s assumptions what does it mean? Guy Blaylock Clark.
Texas A&MTexas A&M Physics&AstronomyPhysics&Astronomy Seven Pines Symposium XVII 2013 Bell Inequality Experiments Edward S. Fry Physics & Astronomy Department.
Quantum mechanics for Advaitins
Bell inequality & entanglement
Bell’s inequalities and their uses Mark Williamson The Quantum Theory of Information and Computation
Quantum Computing MAS 725 Hartmut Klauck NTU
6/9/2015Bell's Theorem1 Spooky Action at a Distance Bell’s Theorem and the Demise of Local Reality Natalia Parshina Peter Johnson Josh Robertson Denise.
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)
Chapter 22 The EPR paper and Bell's theorem by Steve Kurtz.
Deterministic teleportation of electrons in a quantum dot nanostructure Deics III, 28 February 2006 Richard de Visser David DiVincenzo (IBM, Yorktown Heights)
Quantum Information Technology Group in NUS Singapore Theoretical Section Experimental Section.
Paraty, Quantum Information School, August 2007 Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Quantum Cryptography.
Necessary and sufficient conditions for macroscopic realism from quantum mechanics Johannes Kofler Max Planck Institute of Quantum Optics (MPQ) Garching/Munich,
Study and characterisation of polarisation entanglement JABIR M V Photonic sciences laboratory, PRL.
Physics is becoming too difficult for physicists. — David Hilbert (mathematician)
Institute of Technical Physics Entanglement – Beamen – Quantum cryptography The weird quantum world Bernd Hüttner CPhys FInstP DLR Stuttgart.
In 1887,when Photoelectric Effect was first introduced by Heinrich Hertz, the experiment was not able to be explained using classical principles.
Paraty, Quantum Information School, August 2007 Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Quantum Cryptography (III)
Photonic Bell violation closing the fair-sampling loophole Workshop “Quantum Information & Foundations of Quantum Mechanics” University of British Columbia,
University of Gdańsk, Poland
Requirements for a loophole-free Bell test using imperfect setting generators Johannes Kofler Max Planck Institute of Quantum Optics (MPQ) Garching/Munich,
QUANTUM TELEPORTATION
1 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lecture 19 (2009)
Steering witnesses and criteria for the (non-)existence of local hidden state (LHS) models Eric Cavalcanti, Steve Jones, Howard Wiseman Centre for Quantum.
QCCC07, Aschau, October 2007 Miguel Navascués Stefano Pironio Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Cryptographic properties of.
A comparison between Bell's local realism and Leggett-Garg's macrorealism Group Workshop Friedrichshafen, Germany, Sept 13 th 2012 Johannes Kofler.
Necessary adaptation of the CH/Eberhard inequality bound for a loophole-free Bell test Quantum Theory: from Problems to Advances – QTPA Linnaeus University,
Blaylock - Williams College 4/17/15 Wringing John Bell vocabulary the EPR paradox Bell’s theorem Bell’s assumptions what does it mean? Guy Blaylock Williams.
1 Experimenter‘s Freedom in Bell‘s Theorem and Quantum Cryptography Johannes Kofler, Tomasz Paterek, and Časlav Brukner Non-local Seminar Vienna–Bratislava.
Black-box Tomography Valerio Scarani Centre for Quantum Technologies & Dept of Physics National University of Singapore.
Quantum mechanical phenomena. The study between quanta and elementary particles. Quanta – an indivisible entity of a quantity that has the same value.
A condition for macroscopic realism beyond the Leggett-Garg inequalities APS March Meeting Boston, USA, March 1 st 2012 Johannes Kofler 1 and Časlav Brukner.
Quantum entanglement and macroscopic quantum superpositions Quantum Information Symposium Institute of Science and Technology (IST) Austria 7 March 2013.
Bell tests with Photons Henry Clausen. Outline:  Bell‘s theorem  Photon Bell Test by Aspect  Loopholes  Photon Bell Test by Weihs  Outlook Photon.
Violation of local realism with freedom of choice Faculty of Physics, University of Vienna, Austria Institute for Quantum Optics and Quantum Information.
Quantum randomness and the device-independent claim Valerio Scarani Acknowledgment: Singapore MoE Academic Research Fund Tier 3 MOE2012- T “Random.
Nonlocality test of continuous variable state 17, Jan,2003 QIPI meeting Wonmin Son Queen’s University, Belfast.
The EPR Paradox, Bell’s inequalities, and its significance By: Miles H. Taylor.
Bell and Leggett-Garg tests of local and macroscopic realism Theory Colloquium Johannes Gutenberg University Mainz, Germany 13 June 2013 Johannes Kofler.
Bell’s Inequality.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Macrorealism, the freedom-of-choice loophole, and an EPR-type BEC experiment Faculty of Physics, University of Vienna, Austria Institute for Quantum Optics.
William Plick, PhD IQOQI Vienna APS March Meeting, March 6th, 2014.
Spooky action at distance also for neutral kaons? by Beatrix C. Hiesmayr University of Vienna Projects: FWF-P21947 FWF-P23627 FWF-P26783 Fundamental Problems.
Secret keys and random numbers from quantum non locality Serge Massar.
Non-locality and quantum games Dmitry Kravchenko University of Latvia Theory days at Jõulumäe, 2008.
No Fine Theorem for Macrorealism Johannes Kofler Max Planck Institute of Quantum Optics (MPQ) Garching/Munich, Germany Quantum and Beyond Linnaeus University,
Using Neutrino Oscillations to Test the Foundations of Quantum Mechanics David Kaiser.
Quantum nonlocality based on finite-speed causal influences
Entangled Electrons.
Understanding Quantum Correlations
No Fine theorem for macroscopic realism
Loophole-free test of Bell’s theorem with entangled photons
M. Stobińska1, F. Töppel2, P. Sekatski3,
Simulating entanglement without communication
Quantum mechanics from classical statistics
Bell’s inequality. The quantum world is stranger than we can imagine
Johannes Kofler Max Planck Institute of Quantum Optics (MPQ)
Max Planck Institute of Quantum Optics (MPQ)
EPR Paradox and Bell’s theorem
Presentation transcript:

Closing loopholes in Bell tests of local realism Workshop Quantum Physics and the Nature of Reality International Academy Traunkirchen, Austria 22 November 2013 Johannes Kofler Max Planck Institute of Quantum Optics (MPQ) Garching / Munich, Germany

Overview Assumptions in Bells theorem Realism Locality Freedom of choice Closing loopholes Locality Freedom of choice Fair sampling Coincidence time Conclusion and outlook

Acknowledgements Anton Zeilinger Marissa GiustinaBernhard Wittmann Sae Woo Nam Rupert Ursin Sven Ramelow Jan-Åke Larsson

Quantum mechanics and hidden variables Bohr and Einstein, Kopenhagen interpretation (Bohr, Heisenberg, etc.) 1932Von Neumanns (wrong) proof of non- possibility of hidden variables 1935Einstein-Podolsky-Rosen paradox 1952De Broglie-Bohm (nonlocal) hidden variable theory 1964Bells theorem on local hidden variables 1972First successful Bell test (Freedman & Clauser) History

Local realism Realism:Physical properties are (probabilistically) defined prior to and independent of measurement Locality:No physical influence can propagate faster than the speed of light External world Passive observers Classical world view:

Realism: Hidden variables determine global prob. distrib.: p(A a 1 b 1, A a 1 b 2, A a 2 b 1,…|λ) Locality: (OI)Outcome independence:p(A|a,b,B,λ) = p(A|a,b,λ)& vice versa for B (SI)Setting independence:p(A|a,b,λ) = p(A|a,λ) & vice versa for B factorizability: p(A,B|a,b,λ) = p(A|a,λ) p(B|b,λ) Freedom of choice: (a,b|λ) = (a,b) (λ|a,b) = (λ) Bells Assumptions Bells assumptions 1 J. F. Clauser and A. Shimony, Rep. Prog. Phys. 41, 1881 (1978) J. S. Bell, Speakable and Unspeakable in Quantum Mechanics, p. 243 (2004) 2 J. S. Bell, Physics 1, 195 (1964)

Realism + Locality + Freedom of choice + X Bells inequality Bells original derivation 1 only implicitly assumed freedom of choice: A(a,b,B,λ)A(a,b,B,λ) locality (λ|a,b) A(a,λ) B(b,λ) – (λ|a,c) A(a,λ) B(c,λ) freedom of choice explicitly: implicitly: Bells Assumptions Bells theorem 1 J. S. Bell, Physics 1, 195 (1964) 2 J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, PRL 23, 880 (1969) B(a,b,A,λ)B(a,b,A,λ) Remarks:original Bell paper 1 :X = Perfect anti-correlation CHSH 2 :X = Fair sampling

Loopholes Why important? – quantum foundations – security of entanglement-based quantum cryptography Three main loopholes: Locality loophole hidden communication between the parties closed for photons (1982 1, ) Freedom-of-choice loophole settings are correlated with hidden variables closed for photons ( ) Fair-sampling (detection) loophole measured subensemble is not representative closed for atoms ( ), superconducting qubits ( ) and for photons ( ) 1 A. Aspect et al., PRL 49, 1804 (1982) 2 G. Weihs et al., PRL 81, 5039 (1998) 3 T. Scheidl et al., PNAS 107, (2010) 4 M. A. Rowe et al., Nature 409, 791 (2001) 5 M. Ansmann et al., Nature 461, 504 (2009) 6 M. Giustina et al., Nature 497, 227 (2013) Loopholes: maintain local realism despite exp. Bell violation E

Locality:A is space-like sep. from b and B B is space-like sep. from a and A T. Scheidl, R. Ursin, J. K., T. Herbst, L. Ratschbacher, X. Ma, S. Ramelow, T. Jennewein, A. Zeilinger, PNAS 107, (2010) Locality & freedom of choice b,Bb,B E,AE,A a Tenerife La Palma Freedom of choice:a and b are random a and b are space-like sep. from E E p(a,b| ) = p(a,b) p(A,B|a,b, ) = p(A|a, ) p(B|b, ) La PalmaTenerife

Fair-sampling loophole Unfair sampling:Local detection efficiency is setting-dependent A = A (a, ), B = B (b, ) fair-sampling (detection) loophole 1 Local realistic models 2,3 1 P. M. Pearle, PRD 2, 1418 (1970) 2 F. Selleri and A. Zeilinger, Found. Phys. 18, 1141 (1988) 3 N. Gisin and B. Gisin, Phys. Lett. A 260, 323 (1999) Detection efficiency is not optional in security-related tasks (device-independent quantum cryptography): faked Bell violations 4 Reproduces the quantum predictions of the singlet state with detection efficiency 2/3 Fair sampling:Local detection efficiency depends only on hidden variable: A = A ( ), B = B ( ) observed outcomes faithfully reproduce the statistics of all emitted particles 4 I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V. Makarov, C. Kurtsiefer, PRL 107, (2011)

CHSH vs. CH/Eberhard inequality CHSH inequality 1 two detectors per side correlation functions fair-sampling assumption used in derivation requires indep. verific. of tot > 82.8 % 2 maximally entangled states optimal 1 J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, PRL 23, 880 (1969) 2 A. Garg and N. D. Mermin, PRD 35, 3831 (1987) CH 3 (Eberhard 3 ) inequality only one detector per side probabilities (counts) no fair-sampling assumption in the derivation no requirement to measure tot impossible to violate unless tot > 66.7 % non-max. entangled states optimal 3 J. F. Clauser and M. A. Horne, PRD 10, 526 (1974) 4 P. H. Eberhard, PRA 47, 747 (1993)

Transition-edge sensors 1 Picture from: Topics in Applied Physics 99, (2005) 2 A. E. Lita, A. J. Miller, S. W. Nam, Opt. Express 16, 3032 (2008) Working principle Superconductor ( 200 nm thick tungsten film at 100 mK) at transition edge Steep dependence of resistivity on temperature Measurable temperature change by single absorbed photon Superconducting transition-edge sensors 1 Characteristics High efficiency > 95 % 2 Low noise < 10 Hz 2 Photon-number resolving

Setup Sagnac-type entangled pair source Non-max. entangled states Fiber-coupling efficiency > 90% Filters: background- photon elimination > 99% M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. K., J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, A. Zeilinger, Nature 497, 227 (2013)

Experimental results 1 M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. K., J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, A. Zeilinger, Nature 497, 227 (2013) 2 J. K., S. Ramelow, M. Giustina, A. Zeilinger, arXiv: [quant-ph] (2013) Photon: only system for which all main loopholes are now closed (not yet simultaneously) Violation of Eberhards inequality seconds per setting combination Collection efficiency tot 75% No background correction etc. C(a1,b1)C(a1,b1)C(a1,b2)C(a1,b2)C(a2,b1)C(a2,b1)C(a2,b2)C(a2,b2)SA(a1)SA(a1)SB(b1)SB(b1)J Exp. data – Model Deviation–0,04 %0,01 %0,11 %–1,51 %1,04 %–0,43 %

The coincidence-time loophole 1 J.-Å. Larsson and R. Gill, EPL 67, 707 (2004) Unfair coincidences:Detection time is setting-dependent T A = T A (a, ), T B = T B (b, ) coincidence-time loophole 1 Fair coincidences:Local detection time depends only on hidden variable: T A = T A ( ), T B = T B ( ) identified pairs faithfully reproduce the statistics of all detected pairs Standard moving windows technique: coincidence if |T A (a, ) –T B (b, )| ½ a 2 b 2 coincidences are missed, CH/Eberhard violated Local realistic model:

Closing the coincidence-time loophole J.-Å. Larsson, M. Giustina, J. K., B. Wittmann, R. Ursin, S. Ramelow, arXiv: (2013) a)Moving windows coincidence-time loophole open b)Predefined fixed local time slots coincidence-time loophole closed c)Triple window for a 2 b 2 coinc. coincidence-time loophole closed

Application to experimental data J.-Å. Larsson, M. Giustina, J. K., B. Wittmann, R. Ursin, and S. Ramelow, arXiv: (2013) Moving windows coinc.-time loophole open Fixed time slots coinc.-time loophole closed Triple-window method coinc.-time loophole closed simultaneous closure of fair-sampling (detection) and coincidence-time loophole

Conclusion and outlook Photons: each of the loopholes has been closed, albeit in separate experiments Loophole-free experiment still missing but in reach Loophole:How to close: Localityspace-like separate A & b,B and B & a,A a,b random Freedom ofspace-like separate E & a,b choicea,b random Fair samplinguse CHSH and also show > 82.8% (detection)or use CH/Eberhard Coincidence-use fixed time slots timeor window-sum method

Loopholes hard/impossible to close Futher loopholes: Superdeterminism:Common cause for E and a,b Wait-at-the-source:E is further in the past; pairs wait before they start travelling Wait-at-the setting:a,b futher in the past; photons used for the setting choice wait before they start traveling Wait-at-the-detector:A,B are farther in the future, photons wait before detection, collapse locality loophole Actions into the past … E