Drosophila Katanin-60 Depolymerizes and Severs at Microtubule Defects

Slides:



Advertisements
Similar presentations
Harinath Doodhi, Eugene A. Katrukha, Lukas C. Kapitein, Anna Akhmanova 
Advertisements

Volume 96, Issue 1, Pages (January 2009)
Volume 22, Issue 5, Pages (May 2012)
Volume 24, Issue 19, Pages (October 2014)
Harinath Doodhi, Eugene A. Katrukha, Lukas C. Kapitein, Anna Akhmanova 
Volume 10, Issue 11, Pages (November 2017)
Yalei Chen, Melissa M. Rolls, William O. Hancock  Current Biology 
Colleen T. Skau, David R. Kovar  Current Biology 
Rapid Assembly of a Multimeric Membrane Protein Pore
Stephen R. Norris, Marcos F. Núñez, Kristen J. Verhey 
Volume 90, Issue 5, Pages (September 1997)
Volume 43, Issue 5, Pages (September 2011)
Volume 26, Issue 13, Pages (July 2016)
Volume 24, Issue 19, Pages (October 2014)
Volume 106, Issue 8, Pages (April 2014)
Volume 104, Issue 2, Pages (January 2013)
Sophie Dumont, Timothy J. Mitchison  Current Biology 
Mark A. Hallen, Jianghai Ho, Christine D. Yankel, Sharyn A. Endow 
Linda Balabanian, Christopher L. Berger, Adam G. Hendricks 
Jennifer L. Ross, Henry Shuman, Erika L.F. Holzbaur, Yale E. Goldman 
Megan T. Valentine, Steven M. Block  Biophysical Journal 
Actin Polymerization Mediated by AtFH5 Directs the Polarity Establishment and Vesicle Trafficking for Pollen Germination in Arabidopsis  Chang Liu, Yi.
Yuan Lin, David S.W. Protter, Michael K. Rosen, Roy Parker 
The Origin of Phragmoplast Asymmetry
Homodimeric Kinesin-2 KIF3CC Promotes Microtubule Dynamics
Volume 114, Issue 5, Pages (March 2018)
Ahmet Yildiz, Michio Tomishige, Arne Gennerich, Ronald D. Vale  Cell 
She1-Mediated Inhibition of Dynein Motility along Astral Microtubules Promotes Polarized Spindle Movements  Steven M. Markus, Katelyn A. Kalutkiewicz,
Localized Mechanical Stress Promotes Microtubule Rescue
Volume 28, Issue 3, Pages (February 2014)
Susanne Bechstedt, Gary J. Brouhard  Developmental Cell 
Volume 37, Issue 1, Pages (April 2016)
Volume 100, Issue 3, Pages (February 2011)
Volume 24, Issue 1, Pages (January 2013)
Volume 104, Issue 8, Pages (April 2013)
The Timing of Midzone Stabilization during Cytokinesis Depends on Myosin II Activity and an Interaction between INCENP and Actin  Jennifer Landino, Ryoma.
Volume 103, Issue 10, Pages (November 2012)
The Fission Yeast TACC Protein Mia1p Stabilizes Microtubule Arrays by Length- Independent Crosslinking  Rahul Thadani, Yuen Chyao Ling, Snezhana Oliferenko 
Volume 38, Issue 5, Pages (June 2010)
Volume 109, Issue 7, Pages (October 2015)
Volume 18, Issue 21, Pages (November 2008)
Rapid Assembly of a Multimeric Membrane Protein Pore
Michael C. Puljung, William N. Zagotta  Biophysical Journal 
Cholesterol Modulates the Dimer Interface of the β2-Adrenergic Receptor via Cholesterol Occupancy Sites  Xavier Prasanna, Amitabha Chattopadhyay, Durba.
Minus-End-Directed Motor Ncd Exhibits Processive Movement that Is Enhanced by Microtubule Bundling In Vitro  Ken'ya Furuta, Yoko Yano Toyoshima  Current.
Felix Ruhnow, David Zwicker, Stefan Diez  Biophysical Journal 
Volume 138, Issue 6, Pages (September 2009)
Volume 113, Issue 12, Pages (December 2017)
Liza J. Davis, David J. Odde, Steven M. Block, Steven P. Gross 
Arisa Uemura, Thuc-Nghi Nguyen, Amanda N. Steele, Soichiro Yamada 
Volume 24, Issue 13, Pages (July 2014)
Volume 99, Issue 7, Pages (October 2010)
HURP Is Part of a Ran-Dependent Complex Involved in Spindle Formation
Volume 11, Issue 2, Pages (February 2003)
Volume 18, Issue 23, Pages (December 2008)
Minus-End-Directed Motor Ncd Exhibits Processive Movement that Is Enhanced by Microtubule Bundling In Vitro  Ken'ya Furuta, Yoko Yano Toyoshima  Current.
The Kinesin-8 Kif18A Dampens Microtubule Plus-End Dynamics
Susanne Bechstedt, Kevan Lu, Gary J. Brouhard  Current Biology 
Volume 16, Issue 23, Pages (December 2006)
Volume 27, Issue 23, Pages e6 (December 2017)
Volume 14, Issue 20, Pages (October 2004)
Volume 15, Issue 15, Pages (August 2005)
Volume 26, Issue 5, Pages e5 (January 2019)
Marko Kaksonen, Yidi Sun, David G. Drubin  Cell 
Self-Organization of Minimal Anaphase Spindle Midzone Bundles
Joshua S. Weinger, Minhua Qiu, Ge Yang, Tarun M. Kapoor 
XMAP215 Is a Processive Microtubule Polymerase
Jennifer L. Ross, Henry Shuman, Erika L.F. Holzbaur, Yale E. Goldman 
Volume 24, Issue 8, Pages (August 2016)
Volume 37, Issue 1, Pages (April 2016)
Presentation transcript:

Drosophila Katanin-60 Depolymerizes and Severs at Microtubule Defects Juan Daniel Díaz-Valencia, Margaret M. Morelli, Megan Bailey, Dong Zhang, David J. Sharp, Jennifer L. Ross  Biophysical Journal  Volume 100, Issue 10, Pages 2440-2449 (May 2011) DOI: 10.1016/j.bpj.2011.03.062 Copyright © 2011 Biophysical Society Terms and Conditions

Figure 1 Description of domain architecture and purification of GFP-Katanin-60 from Sf9 insect cells. (A) Schematic depiction, approximately to scale, of domain architecture of GFP-Katanin-60. The amino acid length of GFP and Katanin-60 are indicated at the top of the figure. (aa, amino acids; MIT, microtubule interaction and trafficking domain; C.C., coiled-coil; PL-1, Pore Loop-1; PL-2, Pore Loop-2; AAA, AAA minimum consensus ATPase domain, Walker A, Walker B) (B) A coomassie stained SDS-PAGE gel of purified 6×His-tagged GFP-Katanin-60 after protein purification. Arrow marks the position of GFP-Katanin-60 (92 kD) that is the major band and molecular mass markers in kDa indicated at the left. (C) Cartoon of hexameric GFP-Katanin-60 ring showing the location of GFP at NH-terminal. Biophysical Journal 2011 100, 2440-2449DOI: (10.1016/j.bpj.2011.03.062) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 2 Localization of GFP-Katanin-60 during activity on MTs. Time series of MT-severing assays using rhodamine polarity-marked MTs with 200 nM GFP-Katanin-60 at 20 s intervals. From left to right, MTs (red in merge), GFP-Katanin-60 (green in merge), and merge. Scale bar, 5 μm. Biophysical Journal 2011 100, 2440-2449DOI: (10.1016/j.bpj.2011.03.062) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 3 Quantitative measurement of GFP-Katanin-60 MT severing expressed as severing frequency of MTs in the presence of 2 mM ATP [0 nM (N = 18); 25 nM (N = 39); 50 nM (N = 80); 75 nM (N = 48); 100 nM (N = 34); 200 nM (N = 77), circles], in the presence of AMPPNP (N = 11, triangle) in the presence of hexokinase to use up residual ATP (N = 10, square). N-values represent the number of MTs analyzed, the points on the plot represent the mean value, and the error bars represent the mean ± SE. Biophysical Journal 2011 100, 2440-2449DOI: (10.1016/j.bpj.2011.03.062) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 4 GFP-Katanin-60 depolymerizes MTs in an ATP and concentration dependent manner. (A) Time series of rhodamine polarity-marked MTs with 50 nM GFP-Katanin-60. The (+) indicates the plus end and the (−) indicates the minus end. Time between frames is 80 s; scale bar, 5 μm. (B) Kymograph from MT showing depolymerization is faster at plus end (+). Kymographs were used to measure depolymerization rates by drawing a line and measuring the change in distance over the change in time. Vertical scale bar, 10 min; horizontal scale bar, 5 μm. (C) Quantitative measurement of GFP-Katanin-60 MT depolymerization expressed as rate of depolymerization of MTs at plus end [0 nM (N = 19), 25 nM (N = 39), 50 nM (N = 77), 75 nM (N = 53), 100 nM (N = 76), black squares], minus end [0 nM (N = 19), 25 nM (N = 39), 50 nM (N = 164), 75 nM (N = 49), 100 nM (N = 66), white squares] in the presence of 2 mM ATP, with AMPPNP at plus end (N = 12, white circle), and hexokinase at plus end (N = 16, black circle). N-values represent the number of MTs analyzed, the points on the plot represent the mean value, and the error bars represent the mean ± SE. Biophysical Journal 2011 100, 2440-2449DOI: (10.1016/j.bpj.2011.03.062) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 5 GFP-Katanin-p60 severs at interfaces between GMPCPP and GDP-taxol MT segments. (A) The MT frames depict the MTs as they existed at the beginning of the movie before severing (red in merge). The GFP-Katanin-60 frame is a z-projection of the SD of a time series of GFP-Katanin-60 binding (green in merge). Scale bars, 5 μm. (B) Measurement of frequency of severing at 50 nM (N = 9), 75 nM (N = 18), 100 nM (N = 17), and 200 nM (N = 21) GFP-Katanin-60 at interfaces (blue circles) and 1 μm away from interfaces (red squares). N-values represent the number of MTs analyzed, the points on the plot represent the mean value, and the error bars represent the mean ± SE. Biophysical Journal 2011 100, 2440-2449DOI: (10.1016/j.bpj.2011.03.062) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 6 GFP-Katanin-60 dynamics depends on the nucleotide state. (A) Kymographs of 50 nM GFP-Katanin-60 in the presence of 2 mM ATP, 5 mM AMPPNP, and 5 mM hexokinase. Vertical scale bar, 20 min; horizontal scale bar, 5 μm for all images. (B) Examples of kymographs of GFP-Katanin-60 diffusing along taxol-stabilized MTs in the presence of 2 mM ATP. Vertical scale bar, 1 min; horizontal scale bar, 1 μm. Biophysical Journal 2011 100, 2440-2449DOI: (10.1016/j.bpj.2011.03.062) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 7 Photobleaching and fluorescence intensity analysis of GFP-Katanin-60. (A) Representative example of three-step photobleaching event in the presence of 2 mM ATP. (B) Example of multiple photobleaching events in the presence of 2 mM AMPPNP. (C) Probability distribution of number of bleach events per complex in the presence of 2 mM ATP (white bars) and 2 mM AMPPNP (black bars). The average number of bleaching events is 4/complex for ATP; whereas the average number of bleaching events is 6/complex for AMPPNP. Biophysical Journal 2011 100, 2440-2449DOI: (10.1016/j.bpj.2011.03.062) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 8 Illustration of proposed GFP-Katanin-60 activities in vitro and in the cellular context. (A) The GFP-Katanin-60 assembles as a hexamer in the presence of ATP, and associates with defects in the lattice, such as protofilament shifts and MT ends. Once GFP-Katanin-60 binds, it rapidly removes dimers from active sites at plus ends and at defects. (B) In the cell, the same katanin could regulate MT plus ends to alter length and dynamics at the leading edge of migrating cells or at the kinetochores in the mitotic spindle. Biophysical Journal 2011 100, 2440-2449DOI: (10.1016/j.bpj.2011.03.062) Copyright © 2011 Biophysical Society Terms and Conditions