Pei-Chen Peng, Md. Abul Hassan Samee, Saurabh Sinha 

Slides:



Advertisements
Similar presentations
Small Peptide Binding Stiffens the Ubiquitin-like Protein SUMO1
Advertisements

Po-chia Chen, Jochen S. Hub  Biophysical Journal 
Molecular Analysis of the Interaction between Staphylococcal Virulence Factor Sbi-IV and Complement C3d  Ronald D. Gorham, Wilson Rodriguez, Dimitrios.
Changing Chromatin Fiber Conformation by Nucleosome Repositioning
Induced Fit and the Entropy of Structural Adaptation in the Complexation of CAP and λ- Repressor with Cognate DNA Sequences  Surjit B. Dixit, David Q.
Steady-State Differential Dose Response in Biological Systems
Dejun Lin, Alan Grossfield  Biophysical Journal 
The Mechanism of Na+/K+ Selectivity in Mammalian Voltage-Gated Sodium Channels Based on Molecular Dynamics Simulation  Mengdie Xia, Huihui Liu, Yang Li,
Whole-Embryo Modeling of Early Segmentation in Drosophila Identifies Robust and Fragile Expression Domains  Jonathan Bieler, Christian Pozzorini, Felix.
Volume 1, Issue 6, Pages (December 2015)
Jing Han, Kristyna Pluhackova, Tsjerk A. Wassenaar, Rainer A. Böckmann 
Santosh K. Dasika, Kalyan C. Vinnakota, Daniel A. Beard 
Volume 104, Issue 5, Pages (March 2013)
He Meng, Johan Bosman, Thijn van der Heijden, John van Noort 
Systems Biophysics of Gene Expression
DNA Hairpins: Fuel for Autonomous DNA Devices
Volume 21, Issue 1, Pages (October 2017)
Emel Ficici, Daun Jeong, Ioan Andricioaei  Biophysical Journal 
Monika Sharma, Alexander V. Predeus, Nicholas Kovacs, Michael Feig 
Nonspecific Protein-DNA Binding Is Widespread in the Yeast Genome
Yong Wang, Paul Penkul, Joshua N. Milstein  Biophysical Journal 
Volume 114, Issue 5, Pages (March 2018)
Volume 113, Issue 7, Pages (October 2017)
Anton Arkhipov, Wouter H. Roos, Gijs J.L. Wuite, Klaus Schulten 
Volume 107, Issue 6, Pages (September 2014)
Qiaochu Li, Stephen J. King, Ajay Gopinathan, Jing Xu 
On the Distribution of Protein Refractive Index Increments
Christian Rickert, Catherine Proenza  Biophysical Journal 
Xiao-Han Li, Elizabeth Rhoades  Biophysical Journal 
G. Fiorin, A. Pastore, P. Carloni, M. Parrinello  Biophysical Journal 
Francis D. Appling, Aaron L. Lucius, David A. Schneider 
Electrostatic Free Energy Landscapes for DNA Helix Bending
Molecular-Dynamics Simulations of the ATP/apo State of a Multidrug ATP-Binding Cassette Transporter Provide a Structural and Mechanistic Basis for the.
Colocalization of Multiple DNA Loci: A Physical Mechanism
Volume 37, Issue 6, Pages (March 2010)
Stationary Gating of GluN1/GluN2B Receptors in Intact Membrane Patches
Volume 96, Issue 7, Pages (April 2009)
Volume 103, Issue 2, Pages (July 2012)
Margaret J. Tse, Brian K. Chu, Mahua Roy, Elizabeth L. Read 
Till Siebenmorgen, Martin Zacharias  Biophysical Journal 
Teresa Ruiz-Herrero, Michael F. Hagan  Biophysical Journal 
Volume 10, Issue 10, Pages (October 2017)
Volume 110, Issue 7, Pages (April 2016)
Volume 96, Issue 5, Pages (March 2009)
Information Integration and Energy Expenditure in Gene Regulation
Dissecting DNA-Histone Interactions in the Nucleosome by Molecular Dynamics Simulations of DNA Unwrapping  Ramona Ettig, Nick Kepper, Rene Stehr, Gero.
Pek Ieong, Rommie E. Amaro, Wilfred W. Li  Biophysical Journal 
Volume 122, Issue 6, Pages (September 2005)
Replica Exchange Molecular Dynamics Simulations Provide Insight into Substrate Recognition by Small Heat Shock Proteins  Sunita Patel, Elizabeth Vierling,
Dynamics of the BH3-Only Protein Binding Interface of Bcl-xL
Volume 94, Issue 12, Pages (June 2008)
Volume 106, Issue 9, Pages (May 2014)
Theodore R. Rieger, Richard I. Morimoto, Vassily Hatzimanikatis 
Ion-Induced Defect Permeation of Lipid Membranes
Dustin B. McIntosh, Gina Duggan, Quentin Gouil, Omar A. Saleh 
Christina Bergonzo, Thomas E. Cheatham  Biophysical Journal 
Agnes Noy, Anthony Maxwell, Sarah A. Harris  Biophysical Journal 
Brownian Dynamics of Subunit Addition-Loss Kinetics and Thermodynamics in Linear Polymer Self-Assembly  Brian T. Castle, David J. Odde  Biophysical Journal 
Alternative Mechanisms for the Interaction of the Cell-Penetrating Peptides Penetratin and the TAT Peptide with Lipid Bilayers  Semen Yesylevskyy, Siewert-Jan.
Steady-State Differential Dose Response in Biological Systems
Yongli Zhang, Junyi Jiao, Aleksander A. Rebane  Biophysical Journal 
Enrique M. De La Cruz, Jean-Louis Martiel, Laurent Blanchoin 
Po-chia Chen, Jochen S. Hub  Biophysical Journal 
Actin Filament Strain Promotes Severing and Cofilin Dissociation
Small Peptide Binding Stiffens the Ubiquitin-like Protein SUMO1
Transcriptional control: Imprinting insulation
Shayantani Mukherjee, Sean M. Law, Michael Feig  Biophysical Journal 
Amir Marcovitz, Yaakov Levy  Biophysical Journal 
George D. Dickinson, Ian Parker  Biophysical Journal 
Evolution of Specificity in Protein-Protein Interactions
Presentation transcript:

Incorporating Chromatin Accessibility Data into Sequence-to-Expression Modeling  Pei-Chen Peng, Md. Abul Hassan Samee, Saurabh Sinha  Biophysical Journal  Volume 108, Issue 5, Pages 1257-1267 (March 2015) DOI: 10.1016/j.bpj.2014.12.037 Copyright © 2015 Biophysical Society Terms and Conditions

Figure 1 (A) GEMSTAT models the major components of transcriptional regulation and their interactions in thermodynamic equilibrium. Shown are all possible molecular configurations of a transcriptional system where the enhancer contains a single binding site for a TF, with the TF (green) bound or not bound at its site and the BTM (purple) bound or not bound at the promoter. Arrows indicate TF-DNA and TF-BTM interactions, represented by the parameters bindingWt and txpEffect, respectively. GEMSTAT uses the energies associated with these interactions to predict the level of gene expression in the system. (B) GEMSTAT-A assumes that the TF-DNA binding energy at a site S changes according to the accessibility of S. Shown is an example with three identical binding sites where GEMSTAT estimates the same TF-DNA binding energy E0(S). GEMSTAT-A assigns a local accessibility score, Acc(S), to each site S (bottom, y axis), and models the TF-DNA binding energy as E0(S) + kacc(1 − Acc(S)). To see this figure in color, go online. Biophysical Journal 2015 108, 1257-1267DOI: (10.1016/j.bpj.2014.12.037) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 2 Evaluations of expression predictions from GEMSTAT and GEMSTAT-A. The goodness of fit between predicted and real expression for each enhancer was assessed by wPGP score, shown here for all 37 enhancers. Dotted lines delineate regions where the difference in wPGP between the two models is ≥0.05. A selection of enhancers where GEMSTAT-A improves fits are labeled and their expression patterns are shown in Fig. 3. Biophysical Journal 2015 108, 1257-1267DOI: (10.1016/j.bpj.2014.12.037) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 3 Expression predictions from GEMSTAT and GEMSTAT-A. The predicted expression profiles of GEMSTAT-A (orange lines) and GEMSTAT (purple lines) are compared to experimentally determined readouts (black lines) for six selected enhancers. Each expression profile is on a relative scale of 0 to 1 (y axis) and shown for the region between 20% and 80% of the A/P axis of the embryo. The label of each panel is in the format enhancer name, wPGP by GEMSTAT-A (G-A), wPGP by GEMSTAT (G). To see this figure in color, go online. Biophysical Journal 2015 108, 1257-1267DOI: (10.1016/j.bpj.2014.12.037) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 4 GEMSTAT-A learns stronger parameter values. Shown are the bindingWt (A) and txpEffect (B) parameters of each TF learned from GEMSTAT (x axis) and GEMSTAT-A (y axis). In both A and B, both axes are on a logarithmic scale. Repressors are represented by triangles and activators by circles. The txpEffect parameter for an activator is >1, and higher values indicate stronger activation. This parameter for a repressor is <1, and lower values indicate stronger repression. Biophysical Journal 2015 108, 1257-1267DOI: (10.1016/j.bpj.2014.12.037) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 5 Accessibility of individual sites is utilized by GEMSTAT-A to improve predictions. Details of GEMSTAT-A modeling on enhancers gt_(−1), pdm2_(+1), and cnc_(+5) are shown in the left, middle, and right columns, respectively. (A) Change in goodness of fit (ΔwPGP) of GEMSTAT-A predictions when a binding site’s accessibility score is forced to a value of 1 (maximum accessibility), shown for each site as a function of its location in the enhancer. (B) Reduction in estimated binding energy (ΔΔE) due to local accessibility is shown for each annotated binding site as a function of the site’s location in the enhancer sequence. Only sites for a subset of TFs (repressors at left and activators at middle and right) are shown. (C) Predicted expression profiles of GEMSTAT-A (orange lines) compared to GEMSTAT predictions (purple lines) and experimentally determined readouts (black lines). Biophysical Journal 2015 108, 1257-1267DOI: (10.1016/j.bpj.2014.12.037) Copyright © 2015 Biophysical Society Terms and Conditions