ROTATIONAL SPECTRA OF HYDROGEN BONDED NETWORKS OF AMINO ALCOHOLS Di Zhang, Brian C. Dian and Timothy S. Zwier Zwier Research Group, Purdue University
D-Threoninol Follow up Study II2 (g-g+) C I2 (g+g+) D II2 (g-g-) G I2 (g-g-) E II2 (g+g+) A II3 (g+g-) B I3 (g+g-) (S) (S) HO – CH2 – CH – CH – OH – CH3 NH2 (S)
Amino Alcohols 2-amino-1,3-propanediol D-allo-threoninol 1,3-diamino-2-propanol propane-1,2,3-triamine
Calculational Methods 49 101 Force field calculation in Amber* force field was performed first at low computational cost with MacroModel commercial program suite. 101/49/40/21 stable conformation structures were filtered out with a given energy threshold (50kJ mol-1). Full geometry optimizations were performed using MP2 with 6-311++G(d,p) basis set (good for accurate structures) and M052X with 6-31+G(d) basis set. 40 21 Phys.Chem.Chem.Phys., 2009, 11, 617-627
Pulse Generation Molecular Interaction Detection Instrumentation
Rotational spectrum of D-allo-threoninol from 7.5-18.5 GHz MHZ
D-allo-threoninol g+ g- g- g- g- g+ g+ g+ g+ anti Predicted lower energy conformers and relative energies with respect to the global minimum g+ g- g- g- g- g+ g+ g+ g+ anti α→β→ g α β γ 264 cm-1 141 cm-1 cycle I3 44 cm-1 0 cm-1 g →β→α II3 chain 342 cm-1 454 cm-1 496 cm-1 616 cm-1 490 cm-1 550 cm-1 α→β→ g I2 0 cm-1 206 cm-1 264 cm-1 382 cm-1 484 cm-1 565 cm-1 g →β→α II2 382 cm-1 458 cm-1 g →α→β MP2 6-311++G(d,p) M052X 6-31+G(d,p) III2
Hyperfine structures with their respective 2 2,0 ← 1 1,0 rotational transitions g+ g– g→β→α α→β→g Constants Theor. Exp. A (MHz) 3141 3132.5013(17) 3154 3167.001( 33) B (MHz) 2200 2180.1407(20) 2174 2129.223( 33) C (MHz) 1929 1919.8302(25) 1940 1920.516( 71) χaa (MHz) 1.08 0.410(23) -2.38 -2.215(38) χbb (MHz) 2.54 1.642(26) 1.46 1.358(50) χcc (MHz) -3.63 -2.052(26) 0.92 0.858(50) Fꞌ←Fꞌꞌ=3←2 2←1 Fꞌ←Fꞌꞌ=3←2 2←2 1←1 2←1 1←1 1←0
Hyperfine structures with their respective 2 2,0 ← 1 1,0 rotational transitions g- g- g→β→α Constants Theor. Exp. A (MHz) 3888 3859.8998(13) B (MHz) 1799 1785.6589(10) C (MHz) 1497 1489.3877(16) χaa (MHz) 0.73 0.585(23) χbb (MHz) 2.01 1.868(31) χcc (MHz) -2.74 -2.453(31) Fꞌ←Fꞌꞌ=3←2 2←1 1←1 1←0 2←2
2-Amino-1,3 propanediol g- g+ g+ g+ g- g- g- anti Predicted lower energy conformers and relative energies with respect to the global minimum g- g+ g+ g+ g- g- g- anti cycle 146 cm-1 0 cm-1 α β γ α→β→γ I3 0 cm-1 134 cm-1 chain α→β→γ I2 494 cm-1 568 cm-1 297 cm-1 417 cm-1 247 cm-1 339 cm-1 215 cm-1 348 cm-1 443 cm-1 467 cm-1 γ→β→α II2 478 cm-1 559 cm-1 γ→α→β MP2 6-311++G(d,p) M052X 6-31+G(d) III2
1,3-Diamino-2-propanol g- g+ g+ g- g- g- g+ g+ g+ anti anti g+ Predicted lower energy conformers and relative energies with respect to the global minimum g- g+ g+ g- g- g- g+ g+ g+ anti anti g+ 0 cm-1 β cycle γ→β→α II3 α γ 115 cm-1 323 cm-1 322 cm-1 423 cm-1 455 cm-1 577 cm-1 465 cm-1 517 cm-1 α→β→γ chain I2 146 cm-1 282 cm-1 γ→β→α II2 408 cm-1 625 cm-1 β→α 484 cm-1 652 cm-1 β→ γ MP2 6-311++G(d,p) M052X 6-31+G(d)
Propane-1,2,3-triamine g- g+ g+ g+ g- g- Predicted lower energy conformers and relative energies with respect to the global minimum g- g+ g+ g+ g- g- 230 cm-1 80 cm-1 II3 II2 0 cm-1 362 cm-1 265 cm-1 294 cm-1 269 cm-1 β γ→β→α α γ β→α β → γ III2 151 cm-1 184 cm-1 α→β→γ I2 303 cm-1 280 cm-1 394 cm-1 323 cm-1 MP2 6-311++G(d,p) M052X 6-31+G(d)
Calculation methods Population decrease D-allo-Threoninol Population transfer II3(g+g-) II2(g-g-) I3(g+g-) ΔEMP2+ZPC (cm-1) 44 264 ΔEM052X+ZPC (cm-1) 205 141 381 D-allo-Threoninol Rotation of the free –OH group I3(g-g+) I2(g-g-) II2(g-g-) II2(g+g+) II2(g-g+) ΔEMP2+ZPC (cm-1) 146 215 247 297 ΔEM052X+ZPC (cm-1) 134 348 339 417 2-Amino-1,3 propanediol II3(g-g+) II2(g+g-) I2(g+g-) I2(g-g-) ΔEMP2+ZPC (cm-1) 146 115 322 ΔEM052X+ZPC (cm-1) 282 323 423 1,3-Diamino-2-propanol II2(g+g+) II3(g-g+) III2(g-g+) II2(g-g-) II2(g-g+) ΔEMP2+ZPC (cm-1) 230 151 294 362 ΔEM052X+ZPC (cm-1) 80 184 269 265 Propane-1,2,3-triamine Justin L. Neill, Kevin O. Douglass, Brooks H. Pate and David W. Pratt Phys.Chem.Chem.Phys.,2011,13,7253-7262
D-Threoninol 2-Amino-1,3-propanediol D-allo-Threoninol M052X 6-31+G(d) 0 cm-1 0 cm-1 0 cm-1 72 cm-1 0 cm-1 141 cm-1 134 cm-1 345 cm-1 273 cm-1 134 cm-1 205 cm-1 477 cm-1 348 cm-1 348 cm-1 336 cm-1 499 cm-1 417 cm-1 M052X 6-31+G(d)
Energy level diagram of DTR and D-allo D-allo-Threoninol Newman projection ΔEMP2+ZPC (cm-1) chain chain cycle cycle D-Threoninol Steric hindrance in D-allo raises energy of the structure
Conclusions 2.22 Å 2.31 Å Cycles and chains are close in energy to one another, independent of the number and position of the OH and NH2 groups in the trisubstituted aminoalcohol. Cycle forms three weak H-bonds, Chain forms two strong H-bonds. ③ Presence of NH2 : Better H-bond acceptor Poorer H-bond donor H-bond length Distorted structure 2.52 Å 2.16 Å 2.01 Å 2.34 Å 2.63 Å 2.27 Å 2.43 Å 2.12 Å ΔEM052X+ZPC (cm−1 ) cycle chain β γ α→β→γ γ→β→α β→α,γ 2-Amino-1,3 propanediol 1,3-Diamino-2-propanol M052X 6-31+G(d) glycerol α γ→β→α Propane-1,2,3-triamine
Acknowledgments Prof. Tim Zwier Prof. Hyuk Kang Zachary Davis Deepali Mehta Di Zhang Joe Korn Nicole Shimko Patrick Walsh Joseph Gord Daniel Hewett John Hopkins
Rotational spectrum of 2-Amino-1,3-propanediol from 7.5-18.5 GHz MHZ
Hyperfine structures with their respective 3 1,3 ← 2 1,2 rotational transitions g- g- 1→2→3 3→2→1 Constants Theor. Exp. A (MHz) 6083 6049.922(14) 5996 5981.55( 7) B (MHz) 2279 2265.0063( 31) 2273 2257.0734( 11) C (MHz) 1997 1981.1886( 49) 1977 1965.833( 9) χaa (MHz) -0.29 -0.313(33) -4.67 -3.937(23) χbb (MHz) 2.64 2.351(47) 2.75 2.289(60) χcc (MHz) -2.36 -2.038(47) 1.91 1.648(60) Fꞌ←Fꞌꞌ=4←3 Fꞌ←Fꞌꞌ=4←3 2←1 3←2 2←2 3←3
Hyperfine structures with their respective 2 1,1 ← 1 0,1 rotational transitions g- g+ 1→2→3 3→2→1 Constants Theor. Exp. A (MHz) 4242 4208.5777(85) 7735 7679.43( 7) B (MHz) 3134 3130.6943( 15) 1977 1968.92( 9) C (MHz) 2550 2527.3454( 11) 1699 1689.01( 10) χaa (MHz) -2.87 -2.370(20) -3.95 -3.239(9) χbb (MHz) 1.69 1.222(33) 1.79 1.646(41) χcc (MHz) 1.18 1.148(33) 2.16 1.593(41) Fꞌ←Fꞌꞌ=3←2 Fꞌ←Fꞌꞌ=3←2 2←1 1←0 2←2 2←1 2←2
Rotational spectrum of 1,3-Diamino-2-propanol from 7.5-18.5 GHz MHZ
Hyperfine structures with their respective 2 1,2 ← 1 0,1 rotational transitions g+ g- 1→2→3 3→2→1 Constants Theor. Exp. A (MHz) 8073 8000.795(85) 8062 7983.566(20) B (MHz) 1969 1961.541(90) 1947 1941.489(20) C (MHz) 1710 1701.152(58) 1695 1687.348(20) N1χaa (MHz) 2.39 2.146(33) -1.93 -1.551(63) N1χbb (MHz) -4.55 -3.787(37) 0.72 0.735(78) N1χcc (MHz) 2.16 1.640(37) 1.21 0.816(78) N3χaa (MHz) 2.92 2.573(48) 2.40 2.093(32) N3χbb (MHz) 2.24 1.799(48) -4.58 -3.739(41) N3χcc (MHz) -5.16 -4.372(48) 2.18 1.646(41) F1ꞌ, F2ꞌ ←F1ꞌꞌ, F2ꞌꞌ=2,4←2,3 F1ꞌ, F2ꞌ ←F1ꞌꞌ, F2ꞌꞌ=2,4←2,3 1,3←1,2 2,3←2,2 1,3←1,2
Hyperfine structures with their respective 2 1,2 ← 1 0,1 rotational transitions g- g+ 3→2→1 Constants Theor. Exp. A (MHz) 4314 4304.640(59) B (MHz) 3019 2985.145(88) C (MHz) 2488 2465.185(10) N1χaa (MHz) -1.99 -1.661(73) N1χbb (MHz) -0.35 -0.354(74) N1χcc (MHz) 2.34 2.015(74) N3χaa (MHz) 2.17 1.799(74) N3χbb (MHz) -0.52 -0.458(88) N3χcc (MHz) -1.65 -1.342(88) F1ꞌ, F2ꞌ ←F1ꞌꞌ, F2ꞌꞌ=2,4←2,3 2,2←2,1 1,2←1,1 2,2←2,2 1,2←1,2
Hyperfine structures with their respective 2 1,2 ← 1 0,1 rotational transitions g- g- 1→2→3 Constants Theor. Exp. A (MHz) 6132 6056.698(17) B (MHz) 2210 2250.5046(92) C (MHz) 1961 1996.815(14) N1χaa (MHz) 2.79 2.161(55) N1χbb (MHz) -3.98 -3.198(55) N1χcc (MHz) 1.19 1.037(55) N3χaa (MHz) -4.95 -4.373(18) N3χbb (MHz) 2.28 2.190(17) N3χcc (MHz) 2.67 2.180(17) F1ꞌ, F2ꞌ ←F1ꞌꞌ, F2ꞌꞌ=2,4←2,3 2,3←2,2
Rotational spectrum of propane-1,2,3-triamine from 7.5-18.5 GHz
g- g+ 2→1 ; 2→3 3→2→1 Constants Theor. Exp. A (MHz) 7575 7630.837(31) 7393 7309.08(85) B (MHz) 1929 1932.50(11) 1920 1910.062(12) C (MHz) 1686 1663.951(14) 1669 1657.837( 72) N1χaa (MHz) 2.31 2.420(65) 2.35 N1χbb (MHz) -4.37 -3.770(15) -4.27 N1χcc (MHz) 2.06 1.350(15) 1.92 N3χaa (MHz) 1.64 1.090(32) -2.39 N3χbb (MHz) 2.59 2.435(45) 1.15 N3χcc (MHz) -4.24 -3.525(45) 1.24 N5χaa (MHz) 2.320(38) -1.42 N5χbb (MHz) -2.940(68) 0.84 N5χcc (MHz) 0.620(68) 0.59
g+ g+ g- g- 3→2→1 Constants Theor. Exp. A (MHz) 5805 5769.439(79) 5837 5779.63( 41) B (MHz) 2259 2233.750(21) 2227 2195.757( 19) C (MHz) 1969 1943.558(21) 1930 1907.409( 24) N1χaa (MHz) 2.51 2.572(53) 1.70 2.027(52) N1χbb (MHz) -3.65 -3.640(95) -1.63 -3.194(57) N1χcc (MHz) 1.15 1.068(95) -0.05 1.167(57) N3χaa (MHz) -0.43 0.061(97) -3.68 -3.873(78) N3χbb (MHz) 2.32 1.964(10) 2.41 1.377(21) N3χcc (MHz) -1.88 -2.024(10) 1.27 2.496(21) N5χaa (MHz) 0.62 0.079(11) 2.23 1.967(11) N5χbb (MHz) -2.47 -1.970(12) 1.75 1.778(22) N5χcc (MHz) 1.86 1.891(12) -3.98 -3.745(22)