ROTATIONAL SPECTRA OF HYDROGEN BONDED NETWORKS OF AMINO ALCOHOLS

Slides:



Advertisements
Similar presentations
Laboratory Spectrum of the trans-gauche Conformer of Ethyl Formate Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski, Brooks H. Pate Department of Chemistry,
Advertisements

The Delicate Balance of Hydrogen Bond Forces in D-Threoninol 19 Di Zhang, Vanesa Vaquero Vara, Brian C. Dian and Timothy S. Zwier Zwier Research Group,
Single Conformation Spectroscopy of Suberoylanilide Hydroxamic Acid (SAHA): A Molecule bites its tail Di Zhang, Jacob C. Dean and Timothy S. Zwier Zwier.
Fourier transform microwave spectrum of isobutyl mercaptan Kanagawa Institute of Technology 1 and The Graduate University for Advanced Studies 2 Yugo Tanaka,
Single-Conformation Spectroscopy of a Diastereomeric Lignin Monomer: Exploring the Hydrogen Bonding Architectures in a Triol Chain Jacob C. Dean, Evan.
5/23/2015 International Symposium on Molecular Spectroscopy : 65th Meeting 1 DOUBLY HYDROGEN BONDED BIS-(4-HYDROXYPHENYL)METHANE DIMERS. Chirantha P. Rodrigo,
Jason J. Pajski, Matt Logan, Brian C. Dian 1, Gordon G. Brown, Kevin O. Douglass, Richard D. Suenram and Brooks H. Pate Department of Chemistry, University.
Computational Study and Laboratory Spectroscopy of Prebiotic Molecules Produced by O( 1 D) Insertion Reactions Brian Hays, Bridget Alligood DePrince, and.
Chirped-pulsed FTMW Spectrum of 4-Fluorobenzyl Alcohol
THE CONFORMATIONAL BEHAVIOUR OF GLUCOSAMINE I. PEÑA, L. KOLESNIKOVÁ, C. CABEZAS, C. BERMÚDEZ, M. BERDAKIN, A. SIMAO, J.L. ALONSO Grupo de Espectroscopia.
OSU – June – SGK1 STEVE KUKOLICH, ERIK MITCHELL ╬, SPENCER CAREY, MING SUN, AND BRYAN SARGUS, Dept. of Chemistry and Biochemistry, The University.
Spectroscopy of 4-Isocyanobenzonitrile (4IBN)
UTILIZING FORCE FIELD METHODS TO EXPLORE THE POTENTIAL ENERGY LANDSCAPES OF FLEXIBLE BIOMOLECULES TF10: Zachary S. Davis †, Joanne M. Carr *, Ivan Y. W.
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
DANIEL P. ZALESKI, JUSTIN L. NEILL, MATTHEW T. MUCKLE, AMANDA L. STEBER, NATHAN A. SEIFERT, AND BROOKS H. PATE Department of Chemistry, University of Virginia,
Maria Eugenia Sanz, Carlos Cabezas, Santiago Mata, José L. Alonso The Rotational Spectrum of Tryptophan.
A Study of 4,4 ΄ -Dimethylaminobenzonitrile by Chirped-Pulsed Fourier Transform Microwave Spectroscopy Ryan G. Bird, Valerie J. Alstadt, and David W. Pratt.
Millimeter Wave Spectrum of Iso-Propanol A. MAEDA, I. MEDVEDEV, E. HERBST and F. C. DE LUCIA Department of Physics, The Ohio State University.
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.
Adam J. Fleisher Justin W. Young David W. Pratt Department of Chemistry University of Pittsburgh Internal dynamics of water attached to a photoacidic substrate:
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
CONFORMATIONAL SPECIFIC SPECTROSCOPY OF JET COOLED 3-(4-HYDROXYPHENYL)-N-BENZYL- PROPIONAMIDE (HNBPA) ESTEBAN E. BAQUERO, V. ALVIN SHUBERT, AND TIMOTHY.
1 -RH06- PROTON DONOR/ACCEPTOR PROPENSITIES OF AMMONIA ROTATIONAL STUDIES OF ITS MOLECULAR COMPLEXES WITH ORGANIC MOLECULES 64 th OSU International Symposium.
Grupo de Espectroscopia Molecular, Unidad Asociada CSIC Laboratorios de Espectroscopia y Bioespectroscopia Edificio Quifima. Parque Científico Universidad.
Equilibrium Molecular Structure and Spectroscopic Parameters of Methyl Carbamate J. Demaison, A. G. Császár, V. Szalay, I. Kleiner, H. Møllendal.
Rotation about Single Bonds: Conformations
Molecular Stark Effect Measurements in Broadband Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrometers Leonardo Alvarez-Valtierra, 1 Steven.
Tutorial – 4 1) Calculate the moment of inertia (I) and bond length (r) from microwave spectrum of CO. First line (J = 0 to J=1 transition) in the rotation.
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
1 International Symposium on Molecular Spectroscopy 64 th Meeting - June 22-26, 2009, Ohio State University, Columbus, OH Presented by Chirantha P. Rodrigo,
Determination of Torsional Barriers of Itaconic Acid and N-acetylethanolamine using Chirped-pulsed FTMW Spectroscopy. Josiah R. Bailey, Timothy J. McMahon,
SURVEYING THE HYDROGEN BONDING LANDSCAPE OF AN ACHIRAL, α-AMINO ACID: CONFORMATION SPECIFIC IR AND UV SPECTROSCOPY OF 2-AMINOISOBUTYRIC ACID TD02 Joseph.
The Rotational Spectrum of N-Acetyl Phenylalanine Methyl Ester Measured with a Medium Bandwidth (100 MHz) Chirped-Pulse Fourier Transform Microwave Spectrometer.
EXAMPLE THE SPECTRUM OF HCl SHOWS A VERY INTENSE ABSORPTION BAND AT 2886 cm -1 AND A WEAKER BAND AT 5668 cm -1. CALCULATE x e, ṽ o, THE FORCE CONSTANT.
Vibrational Spectroscopy of Benzene-(Water) n with n=6,7 Daniel Tabor 1, Ryoji Kusaka 2, Patrick Walsh 2, Edwin Sibert 1, Timothy Zwier 2 1 University.
1 The Inherent Conformational Preferences of Glutamine-Containing Peptides: The Role for Side-Chain Backbone Hydrogen Bonds Patrick S. Walsh 1, Jacob C.
0 ipc kiel The rotational spectrum of the pyrrole-ammonia complex Heinrich Mäder, Christian Rensing and Friedrich Temps Institut für Physikalische Chemie.
Laboratory of Millimetre-wave Spectroscopy of Bologna The ROTATIONAL SPECTRUM of HDO : ACCURATE SPECTROSCOPIC and HYPERFINE PARAMETERS G. Cazzoli*, V.
1 -RJ16- NON COVALENT INTERACTIONS AND INTERNAL DYNAMICS IN ADDUCTS OF FREONS 69 th Symposium, Urbana-Champaign, June 16-20, 2012 Dipartimento di Chimica.
High Resolution Electronic Spectroscopy of 9-Fluorenemethanol (9FM) in the Gas Phase Diane M. Mitchell, James A.J. Fitzpatrick and David W. Pratt Department.
CHIRPED PULSE AND CAVITY FT MICROWAVE SPECTROSCOPY OF THE HCOOH – N(CH 3 ) 3 WEAKLY BOUND COMPLEX Rebecca B. Mackenzie, Christopher T. Dewberry, and Kenneth.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Microwave Spectroscopic Investigations of the Xe-H 2 O and Xe-(H 2 O) 2 van der Waals Complexes Qing Wen and Wolfgang Jäger Department of Chemistry, University.
OSU – June – SGK1 ADAM DALY, STEVE KUKOLICH, Dept. of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona CHAKREE TANJAROON,
Rotational Spectra of Adducts of Formaldehyde with Freons Qian Gou, 1 Gang Feng, 1 Luca Evangelisti, 1 Montserrat Vallejo-López, 2 Alberto Lesarri, 2 Walther.
CONFORMATION-SPECIFIC ELECTRONIC SPECTROSCOPY OF JET-COOLED 5-PHENYL-1-PENTENE NATHAN R. PILLSBURY, TALITHA M. SELBY, AND TIMOTHY S. ZWIER, Department.
Rotational Spectra of N 2 O-H 2 Complexes University of Alberta Jen Nicole Landry and Wolfgang Jäger June 23, 2005.
THE PURE ROTATIONAL SPECTRUM OF PERFLUOROOCTANONITRILE, C 7 F 15 CN, STUDIED USING CAVITY- AND CHIRPED-PULSED FOURIER TRANSFORM MICROWAVE SPECTROSCOPIES.
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
John T. Lawler, Andrew DeBlase, Chris Harrilal, Scott A
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
Daniel Tabor1, Patrick Walsh2, Timothy Zwier2, Edwin Sibert1
Carlos Cabezas and Yasuki Endo
Daniel M. Hewett, Simply John T. Lawler, and Timothy S. Zwier
CONFORMATIONAL EXPLOSION:
Single-Conformation IR and UV Spectroscopy of a Prototypical Heterogeneous α/β Peptide: Is It a Mixed-Helix Former? Karl N. Blodgett1, Patrick S. Walsh1,
Chirped Pulse Microwave Spectroscopy on Methyl Butanoate
Rotational Spectra of Adducts of Pyridine with Methane and Its Halides
Isomer-specific Spectroscopy of Benzene-(water)n Clusters with n=2-6:
The Effect of Protic Acid Identity on the Structures of Complexes with Vinyl Chloride: Fourier Transform Microwave Spectroscopy and Molecular Structure.
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
CAITLIN BRAY CARA RAE RIVERA E. A. ARSENAULT DANIEL A. OBENCHAIN
CHIRALITY DETERMINATION FROM PULSED-JET FOURIER TRANSFORM
THE STRUCTURE OF PHENYLGLYCINOL
Fourier transform microwave spectra of n-butanol and isobutanol
Funded by NSF (ES) and DOE (TZ)
The Conformational Landscape of Serinol
Wei Lin, Anan Wu, Zin Lu, Daniel A. Obenchain, Stewart E. Novick
Presentation transcript:

ROTATIONAL SPECTRA OF HYDROGEN BONDED NETWORKS OF AMINO ALCOHOLS Di Zhang, Brian C. Dian and Timothy S. Zwier Zwier Research Group, Purdue University

D-Threoninol Follow up Study II2 (g-g+) C I2 (g+g+) D II2 (g-g-) G I2 (g-g-) E II2 (g+g+) A II3 (g+g-) B I3 (g+g-) (S) (S) HO – CH2 – CH – CH – OH – CH3 NH2 (S)

Amino Alcohols 2-amino-1,3-propanediol D-allo-threoninol 1,3-diamino-2-propanol propane-1,2,3-triamine

Calculational Methods 49 101 Force field calculation in Amber* force field was performed first at low computational cost with MacroModel commercial program suite. 101/49/40/21 stable conformation structures were filtered out with a given energy threshold (50kJ mol-1). Full geometry optimizations were performed using MP2 with 6-311++G(d,p) basis set (good for accurate structures) and M052X with 6-31+G(d) basis set. 40 21 Phys.Chem.Chem.Phys., 2009, 11, 617-627

Pulse Generation Molecular Interaction Detection Instrumentation

Rotational spectrum of D-allo-threoninol from 7.5-18.5 GHz MHZ

D-allo-threoninol g+ g- g- g- g- g+ g+ g+ g+ anti Predicted lower energy conformers and relative energies with respect to the global minimum g+ g- g- g- g- g+ g+ g+ g+ anti α→β→ g α β γ 264 cm-1 141 cm-1 cycle I3 44 cm-1 0 cm-1 g →β→α II3 chain 342 cm-1 454 cm-1 496 cm-1 616 cm-1 490 cm-1 550 cm-1 α→β→ g I2 0 cm-1 206 cm-1 264 cm-1 382 cm-1 484 cm-1 565 cm-1 g →β→α II2 382 cm-1 458 cm-1 g →α→β MP2 6-311++G(d,p) M052X 6-31+G(d,p) III2

Hyperfine structures with their respective 2 2,0 ← 1 1,0 rotational transitions g+ g– g→β→α α→β→g Constants Theor. Exp. A (MHz) 3141 3132.5013(17) 3154 3167.001( 33) B (MHz) 2200 2180.1407(20) 2174 2129.223( 33) C (MHz) 1929 1919.8302(25) 1940 1920.516( 71) χaa (MHz) 1.08 0.410(23) -2.38 -2.215(38) χbb (MHz) 2.54 1.642(26) 1.46 1.358(50) χcc (MHz) -3.63 -2.052(26) 0.92 0.858(50) Fꞌ←Fꞌꞌ=3←2 2←1 Fꞌ←Fꞌꞌ=3←2 2←2 1←1 2←1 1←1 1←0

Hyperfine structures with their respective 2 2,0 ← 1 1,0 rotational transitions g- g- g→β→α Constants Theor. Exp. A (MHz) 3888 3859.8998(13) B (MHz) 1799 1785.6589(10) C (MHz) 1497 1489.3877(16) χaa (MHz) 0.73 0.585(23) χbb (MHz) 2.01 1.868(31) χcc (MHz) -2.74 -2.453(31) Fꞌ←Fꞌꞌ=3←2 2←1 1←1 1←0 2←2

2-Amino-1,3 propanediol g- g+ g+ g+ g- g- g- anti Predicted lower energy conformers and relative energies with respect to the global minimum g- g+ g+ g+ g- g- g- anti cycle 146 cm-1 0 cm-1 α β γ α→β→γ I3 0 cm-1 134 cm-1 chain α→β→γ I2 494 cm-1 568 cm-1 297 cm-1 417 cm-1 247 cm-1 339 cm-1 215 cm-1 348 cm-1 443 cm-1 467 cm-1 γ→β→α II2 478 cm-1 559 cm-1 γ→α→β MP2 6-311++G(d,p) M052X 6-31+G(d) III2

1,3-Diamino-2-propanol g- g+ g+ g- g- g- g+ g+ g+ anti anti g+ Predicted lower energy conformers and relative energies with respect to the global minimum g- g+ g+ g- g- g- g+ g+ g+ anti anti g+ 0 cm-1 β cycle γ→β→α II3 α γ 115 cm-1 323 cm-1 322 cm-1 423 cm-1 455 cm-1 577 cm-1 465 cm-1 517 cm-1 α→β→γ chain I2 146 cm-1 282 cm-1 γ→β→α II2 408 cm-1 625 cm-1 β→α 484 cm-1 652 cm-1 β→ γ MP2 6-311++G(d,p) M052X 6-31+G(d)

Propane-1,2,3-triamine g- g+ g+ g+ g- g- Predicted lower energy conformers and relative energies with respect to the global minimum g- g+ g+ g+ g- g- 230 cm-1 80 cm-1 II3 II2 0 cm-1 362 cm-1 265 cm-1 294 cm-1 269 cm-1 β γ→β→α α γ β→α β → γ III2 151 cm-1 184 cm-1 α→β→γ I2 303 cm-1 280 cm-1 394 cm-1 323 cm-1 MP2 6-311++G(d,p) M052X 6-31+G(d)

Calculation methods Population decrease D-allo-Threoninol Population transfer II3(g+g-) II2(g-g-) I3(g+g-) ΔEMP2+ZPC (cm-1) 44 264 ΔEM052X+ZPC (cm-1) 205 141 381 D-allo-Threoninol Rotation of the free –OH group I3(g-g+) I2(g-g-) II2(g-g-) II2(g+g+) II2(g-g+) ΔEMP2+ZPC (cm-1) 146 215 247 297 ΔEM052X+ZPC (cm-1) 134 348 339 417 2-Amino-1,3 propanediol II3(g-g+) II2(g+g-) I2(g+g-) I2(g-g-) ΔEMP2+ZPC (cm-1) 146 115 322 ΔEM052X+ZPC (cm-1) 282 323 423 1,3-Diamino-2-propanol II2(g+g+) II3(g-g+) III2(g-g+) II2(g-g-) II2(g-g+) ΔEMP2+ZPC (cm-1) 230 151 294 362 ΔEM052X+ZPC (cm-1) 80 184 269 265 Propane-1,2,3-triamine Justin L. Neill, Kevin O. Douglass, Brooks H. Pate and David W. Pratt Phys.Chem.Chem.Phys.,2011,13,7253-7262

D-Threoninol 2-Amino-1,3-propanediol D-allo-Threoninol M052X 6-31+G(d) 0 cm-1 0 cm-1 0 cm-1 72 cm-1 0 cm-1 141 cm-1 134 cm-1 345 cm-1 273 cm-1 134 cm-1 205 cm-1 477 cm-1 348 cm-1 348 cm-1 336 cm-1 499 cm-1 417 cm-1 M052X 6-31+G(d)

Energy level diagram of DTR and D-allo D-allo-Threoninol Newman projection ΔEMP2+ZPC (cm-1) chain chain cycle cycle D-Threoninol Steric hindrance in D-allo raises energy of the structure

Conclusions 2.22 Å 2.31 Å Cycles and chains are close in energy to one another, independent of the number and position of the OH and NH2 groups in the trisubstituted aminoalcohol. Cycle forms three weak H-bonds, Chain forms two strong H-bonds. ③ Presence of NH2 : Better H-bond acceptor Poorer H-bond donor H-bond length Distorted structure 2.52 Å 2.16 Å 2.01 Å 2.34 Å 2.63 Å 2.27 Å 2.43 Å 2.12 Å  ΔEM052X+ZPC (cm−1 ) cycle chain β γ α→β→γ γ→β→α β→α,γ 2-Amino-1,3 propanediol 1,3-Diamino-2-propanol M052X 6-31+G(d) glycerol α γ→β→α Propane-1,2,3-triamine

Acknowledgments Prof. Tim Zwier Prof. Hyuk Kang Zachary Davis Deepali Mehta Di Zhang Joe Korn Nicole Shimko Patrick Walsh Joseph Gord Daniel Hewett John Hopkins

Rotational spectrum of 2-Amino-1,3-propanediol from 7.5-18.5 GHz MHZ

Hyperfine structures with their respective 3 1,3 ← 2 1,2 rotational transitions g- g- 1→2→3 3→2→1 Constants Theor. Exp. A (MHz) 6083 6049.922(14) 5996 5981.55( 7) B (MHz) 2279 2265.0063( 31) 2273 2257.0734( 11) C (MHz) 1997 1981.1886( 49) 1977 1965.833( 9) χaa (MHz) -0.29 -0.313(33) -4.67 -3.937(23) χbb (MHz) 2.64 2.351(47) 2.75 2.289(60) χcc (MHz) -2.36 -2.038(47) 1.91 1.648(60) Fꞌ←Fꞌꞌ=4←3 Fꞌ←Fꞌꞌ=4←3 2←1 3←2 2←2 3←3

Hyperfine structures with their respective 2 1,1 ← 1 0,1 rotational transitions g- g+ 1→2→3 3→2→1 Constants Theor. Exp. A (MHz) 4242 4208.5777(85) 7735 7679.43( 7) B (MHz) 3134 3130.6943( 15) 1977 1968.92( 9) C (MHz) 2550 2527.3454( 11) 1699 1689.01( 10) χaa (MHz) -2.87 -2.370(20) -3.95 -3.239(9) χbb (MHz) 1.69 1.222(33) 1.79 1.646(41) χcc (MHz) 1.18 1.148(33) 2.16 1.593(41) Fꞌ←Fꞌꞌ=3←2 Fꞌ←Fꞌꞌ=3←2 2←1 1←0 2←2 2←1 2←2

Rotational spectrum of 1,3-Diamino-2-propanol from 7.5-18.5 GHz MHZ

Hyperfine structures with their respective 2 1,2 ← 1 0,1 rotational transitions g+ g- 1→2→3 3→2→1 Constants Theor. Exp. A (MHz) 8073 8000.795(85) 8062 7983.566(20) B (MHz) 1969 1961.541(90) 1947 1941.489(20) C (MHz) 1710 1701.152(58) 1695 1687.348(20) N1χaa (MHz) 2.39 2.146(33) -1.93 -1.551(63) N1χbb (MHz) -4.55 -3.787(37) 0.72 0.735(78) N1χcc (MHz) 2.16 1.640(37) 1.21 0.816(78) N3χaa (MHz) 2.92 2.573(48) 2.40 2.093(32) N3χbb (MHz) 2.24 1.799(48) -4.58 -3.739(41) N3χcc (MHz) -5.16 -4.372(48) 2.18 1.646(41) F1ꞌ, F2ꞌ ←F1ꞌꞌ, F2ꞌꞌ=2,4←2,3 F1ꞌ, F2ꞌ ←F1ꞌꞌ, F2ꞌꞌ=2,4←2,3 1,3←1,2 2,3←2,2 1,3←1,2

Hyperfine structures with their respective 2 1,2 ← 1 0,1 rotational transitions g- g+ 3→2→1 Constants Theor. Exp. A (MHz) 4314 4304.640(59) B (MHz) 3019 2985.145(88) C (MHz) 2488 2465.185(10) N1χaa (MHz) -1.99 -1.661(73) N1χbb (MHz) -0.35 -0.354(74) N1χcc (MHz) 2.34 2.015(74) N3χaa (MHz) 2.17 1.799(74) N3χbb (MHz) -0.52 -0.458(88) N3χcc (MHz) -1.65 -1.342(88) F1ꞌ, F2ꞌ ←F1ꞌꞌ, F2ꞌꞌ=2,4←2,3 2,2←2,1 1,2←1,1 2,2←2,2 1,2←1,2

Hyperfine structures with their respective 2 1,2 ← 1 0,1 rotational transitions g- g- 1→2→3 Constants Theor. Exp. A (MHz) 6132 6056.698(17) B (MHz) 2210 2250.5046(92) C (MHz) 1961 1996.815(14) N1χaa (MHz) 2.79 2.161(55) N1χbb (MHz) -3.98 -3.198(55) N1χcc (MHz) 1.19 1.037(55) N3χaa (MHz) -4.95 -4.373(18) N3χbb (MHz) 2.28 2.190(17) N3χcc (MHz) 2.67 2.180(17) F1ꞌ, F2ꞌ ←F1ꞌꞌ, F2ꞌꞌ=2,4←2,3 2,3←2,2

Rotational spectrum of propane-1,2,3-triamine from 7.5-18.5 GHz

g- g+ 2→1 ; 2→3 3→2→1 Constants Theor. Exp. A (MHz) 7575 7630.837(31) 7393 7309.08(85) B (MHz) 1929 1932.50(11) 1920 1910.062(12) C (MHz) 1686 1663.951(14) 1669 1657.837( 72) N1χaa (MHz) 2.31 2.420(65) 2.35 N1χbb (MHz) -4.37 -3.770(15) -4.27 N1χcc (MHz) 2.06 1.350(15) 1.92 N3χaa (MHz) 1.64 1.090(32) -2.39 N3χbb (MHz) 2.59 2.435(45) 1.15 N3χcc (MHz) -4.24 -3.525(45) 1.24 N5χaa (MHz) 2.320(38) -1.42 N5χbb (MHz) -2.940(68) 0.84 N5χcc (MHz) 0.620(68) 0.59

g+ g+ g- g- 3→2→1 Constants Theor. Exp. A (MHz) 5805 5769.439(79) 5837 5779.63( 41) B (MHz) 2259 2233.750(21) 2227 2195.757( 19) C (MHz) 1969 1943.558(21) 1930 1907.409( 24) N1χaa (MHz) 2.51 2.572(53) 1.70 2.027(52) N1χbb (MHz) -3.65 -3.640(95) -1.63 -3.194(57) N1χcc (MHz) 1.15 1.068(95) -0.05 1.167(57) N3χaa (MHz) -0.43 0.061(97) -3.68 -3.873(78) N3χbb (MHz) 2.32 1.964(10) 2.41 1.377(21) N3χcc (MHz) -1.88 -2.024(10) 1.27 2.496(21) N5χaa (MHz) 0.62 0.079(11) 2.23 1.967(11) N5χbb (MHz) -2.47 -1.970(12) 1.75 1.778(22) N5χcc (MHz) 1.86 1.891(12) -3.98 -3.745(22)