doc.: IEEE <doc#>

Slides:



Advertisements
Similar presentations
Doc.: IEEE b Submission March 2005 Francois Chin, Institute for Infocomm Research (I 2 R) Slide 1 Project: IEEE P Working Group.
Advertisements

Doc.: IEEE a Submission Jan 2005 Francois Chin, Institute for Infocomm Research (I 2 R) Slide 1 Project: IEEE P Working Group.
Doc.: IEEE a Submission May 2005 Francois Chin (I 2 R) Slide 1 Project: IEEE P Working Group for Wireless Personal Area Networks.
Doc.: IEEE b Submission Jan 2005 Francois Chin, Institute for Infocomm Research (I 2 R) Slide 1 Project: IEEE P Working Group.
March 2001 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [PHY proposal for the Low Rate Standard]
doc.: IEEE <doc#>
Submission Title: [Add name of submission]
Name - WirelessHD doc.: IEEE g July 2010
June 2006 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Proposed Scenarios for Usage Model Document.
doc.: IEEE <doc#>
doc.: IEEE <doc#>
doc.: IEEE <doc#>
doc.: IEEE <doc#>
doc.: IEEE <doc#>
doc.: IEEE <doc#>
doc.: IEEE <doc#>
May 2010 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Proposed Resolution To The FCC Part
doc.: IEEE <doc#>
doc.: IEEE <doc#>
doc.: IEEE <doc#>
doc.: IEEE <doc#>
<month year> doc.: IEEE <xyz> January 2001
1/2/2019 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Modulation Simulation Results] Date Submitted:
Date Submitted: [26-Oct-2005]
Submission Title: [FEC & Modulation Options and considerations]
doc.: IEEE <doc#>
Project: IEEE P WG for Wireless Personal Area Networks (WPANs)
doc.: IEEE <doc#>
doc.: IEEE <doc#>
doc.: IEEE <doc#>
May 2010 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Proposed Resolution To The FCC Part
doc.: IEEE <doc#>
doc.: IEEE <doc#>
Date Submitted: [26-Oct-2005]
<month year> doc.: IEEE <030158r0> September 2003
<month year> <doc.: IEEE doc> March 2015
doc.: IEEE <doc#>
doc.: IEEE <doc#>
doc.: IEEE <doc#>
doc.: IEEE <doc#>
doc.: IEEE <doc#>
doc.: IEEE <doc#>
doc.: IEEE <doc#>
doc.: IEEE /XXXr0 Sep 19, 2007 June 2009
doc.: IEEE <doc#>
<month year>20 Jan 2006
doc.: IEEE <doc#>
doc.: IEEE <doc#>
doc.: IEEE <doc#>
doc.: IEEE <doc#>
doc.: IEEE <doc#>
doc.: IEEE <doc#>
<month year> <doc.: IEEE doc> March 2015
doc.: IEEE <doc#>
doc.: IEEE <doc#>
5/7/2019 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [modulation summary for TG4a] Date Submitted:
doc.: IEEE <doc#>
Submission Title: [SFD comparison] Date Submitted: [18−July−2006]
Submission Title: [SFD comparison] Date Submitted: [18−July−2006]
doc.: IEEE <doc#>
Sept 2005 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Data modulation simulation results] Date.
Submission Title: [SFD comparison] Date Submitted: [18−July−2006]
<author>, <company>
June, 2010 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [OFDM PHY Mode Representation] Date Submitted:
doc.: IEEE <doc#>
May 2010 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Proposed Resolution To The FCC Part
Mar 2008 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Resolution for Comment 70 ] Date Submitted:
Mar 2008 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Resolution for Comment 70 ] Date Submitted:
July 2009 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Flexible DSSS Merging Effort] Date Submitted:
12/15/2019 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [AWGN Simulation Results] Date Submitted:
Presentation transcript:

doc.: IEEE 802.15-<doc#> <month year> doc.: IEEE 802.15-<doc#> Sept 2004 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Proposed Code Sequences for IEEE 802.15.4a Alt-PHY] Date Submitted: [13 Sept, 2004] Source: [Francois Chin, Sam Kwok, Xiaoming Peng, Kannan, Yong- Huat Chew, Chin-Choy Chai, Hongyi Fu, Manjeet, Tung-Chong Wong, T.T. Tjhung, Zhongding Lei, Rahim] Company: [Institute for Infocomm Research, Singapore] Address: [21 Heng Mui Keng Terrace, Singapore 119613] Voice: [65-68745684] FAX: [65-67768109] E-Mail: [chinfrancois@i2r.a-star.edu.sg] Re: [Response to the call for proposal of IEEE 802.15.4b, Doc Number: 15-04-0239-00-004b] Abstract: [This presentation compares all proposals for the IEEE802.15.4b PHY standard.] Purpose: [Proposal to IEEE 802.15.4b Task Group] Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15. Francois Chin, Institute for Infocomm Research (I2R) <author>, <company>

doc.: IEEE 802.15-<doc#> <month year> doc.: IEEE 802.15-<doc#> Sept 2004 Proposed Code Sequences for IEEE 802.15.4a Alt-PHY Francois Chin Institute for Infocomm Research Singapore Francois Chin, Institute for Infocomm Research (I2R) <author>, <company>

doc.: IEEE 802.15-<doc#> <month year> doc.: IEEE 802.15-<doc#> Sept 2004 Proposed System Parameters Chip rate 16 Mcps Pulse Rep. Freq. 16 MHz Symbol Rate 0.5 MHz Min. info. bit / sym. 4 bit / symbol Max bit rate 4 x 0.5 = 2.0 Mbps # Chip / symbol (Code length) 32 #Code Sequences/ piconet 16 (4 bit/symbol) Code position modulation (CPM) Lower bit rate 250 kbps (2-layer CPM) 31.25 kbps (3-layer CPM) 3.90625 kbps (4-layer CPM) Modulation BPSK or On-Off Keying (OOK) Total # simultaneous piconets supported 6 Multple access for piconets Fixed band and sequence for each piconet Francois Chin, Institute for Infocomm Research (I2R) <author>, <company>

doc.: IEEE 802.15-<doc#> <month year> doc.: IEEE 802.15-<doc#> Sept 2004 Code Sequence Set Seq 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 Seq 2 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 1 1 Seq 3 1 1 0 1 1 1 1 1 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 1 1 1 0 0 Seq 4 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 0 0 1 Seq 5 1 1 1 1 0 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 Seq 6 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 1 1 0 1 1 31-chip M-Sequence set Only one sequence and one fixed band (no hopping) will be used by all devices in a piconet Logical channels for support of multiple piconets 6 sequences = 6 logical channels (e.g. overlapping piconets) Francois Chin, Institute for Infocomm Research (I2R) <author>, <company>

doc.: IEEE 802.15-<doc#> <month year> doc.: IEEE 802.15-<doc#> Sept 2004 Gray Coded Code Position Modulation (CPM) Symbol Cyclic shift to right by n chips, n= 32-Chip value 0000 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 0001 2 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0011 4 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0010 6 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0110 8 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0111 10 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0101 12 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 0100 14 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 1100 16 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 1101 18 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 1111 20 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1110 22 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1010 24 1 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1011 26 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1001 28 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 1000 30 To obtain 32-chip per symbol, cyclic shift first, then extend 1-chip Francois Chin, Institute for Infocomm Research (I2R) <author>, <company>

doc.: IEEE 802.15-<doc#> <month year> doc.: IEEE 802.15-<doc#> Sept 2004 Cyclic Extended Chip To avoid / reduce inter-symbol interference in channels with excess delay spread Francois Chin, Institute for Infocomm Research (I2R) <author>, <company>

doc.: IEEE 802.15-<doc#> <month year> doc.: IEEE 802.15-<doc#> Sept 2004 Properties of M-Sequences Cyclic auto-correlation of any antipodal sequence gives peak value of 31 and sidelobe value of -1 throughout Cyclic correlation of any antipodal sequence with its corresponding uni-podal sequence give peak value of 16 and zero sidelobe throughout Francois Chin, Institute for Infocomm Research (I2R) <author>, <company>

doc.: IEEE 802.15-<doc#> <month year> doc.: IEEE 802.15-<doc#> Sept 2004 Inter-Piconet Interference Suppression With one overlapping piconet with asynchronous operation, the average interference suppression capability is 13.7dB Francois Chin, Institute for Infocomm Research (I2R) <author>, <company>

doc.: IEEE 802.15-<doc#> <month year> doc.: IEEE 802.15-<doc#> Sept 2004 N-layer CPM To increase spreading gain to achieve reduce bit rate operation & coding gain Operation - The output of the symbol-to-chip mapper is fed into the same symbol-to-chip mapper for N times With N = 2, 4 bits is mapper to 32/4*32 = 256 chips With N = 3, 4 bits is mapper to 32/4*32 /4 * 32 = 2048 chips Example of 3-layer CPM (for 31.25 kbps) 0001 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 …. 16 Mcps 2 Mcps 250 kcps 31.25 kbps Francois Chin, Institute for Infocomm Research (I2R) <author>, <company>

doc.: IEEE 802.15-<doc#> <month year> doc.: IEEE 802.15-<doc#> Sept 2004 Coding Gain of multiple-layer CPM AWGN performance @ BER=10-5 1-layer over PBSK: ~2.5 dB 2-layer over 1-layer: ~ 5 dB 3-layer over 2-layer: ~ 3.5 dB Francois Chin, Institute for Infocomm Research (I2R) <author>, <company>

doc.: IEEE 802.15-<doc#> <month year> doc.: IEEE 802.15-<doc#> Sept 2004 Synchronisation Preamble Correlator output for synchronisation Code sequence has excellent autocorrelation properties Preamble is constructed by repeating base Code Sequence Unique – no symbol & spreading combination can construct this preamble Unlike 15.4, where preamble is constructed by 8x ‘0000’ symbols Francois Chin, Institute for Infocomm Research (I2R) <author>, <company>

doc.: IEEE 802.15-<doc#> <month year> doc.: IEEE 802.15-<doc#> Sept 2004 Summary Advantages of M-Sequence Codes Low auto-correlation One sequence for the entire piconet for Better synchronisation / acquisition performance due to low autocorrelation properties; Simple symbol-to-chip mapping; Further symbol spreading through self-generation layered mechanism to achieve considerable coding gains, leading to better coverage at reduced bit rate operations Reasonably good suppression capability for simultaneous operating piconets Francois Chin, Institute for Infocomm Research (I2R) <author>, <company>