Session 2 INST 346 Technologies, Infrastructure and Architecture

Slides:



Advertisements
Similar presentations
Introduction 2 1: Introduction.
Advertisements

Computer Networks Performance Metrics Advanced Computer Networks Fall 2013.
Computer Networks Performance Metrics Computer Networks Term B10.
James 1:5 If any of you lacks wisdom, he should ask God, who gives generously to all without finding fault, and it will be given to him.
CS 381 Introduction to computer networks Chapter 1 - Lecture 3 2/5/2015.
Lecture 2 Introduction 1-1 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit.
Networking Based on the powerpoint presentation of Computer Networking: A Top Down Approach Featuring the Internet, Third Edition, J.F. Kurose and K.W.
1-1 Foundation Objectives: 1.1 What’s the Internet? 1.2 Network edge 1.3 Network core 1.4 Network access and physical media 1.5 Internet structure and.
Lecture Internet Overview: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching,
Lecture Internet Overview: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching,
Introduction 1 Lecture 3 Networking Concepts slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science & Engineering Department.
Introduction 1-1 Lecture 3 Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 CS3516: These slides.
Slides originally from Professor Williamson at U Calgary1-1 Introduction Part II  Network Core  Delay & Loss in Packet-switched Networks  Structure.
Instructor: Christopher Cole Some slides taken from Kurose & Ross book IT 347: Chapter 1.
How do loss and delay occur?
Introduction 1-1 Chapter 1 Introduction Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Introduction 1-1 “Real” Internet delays and routes  What do “real” Internet delay & loss look like?  Traceroute program: provides delay measurement from.
Computer Networks Performance Metrics. Performance Metrics Outline Generic Performance Metrics Network performance Measures Components of Hop and End-to-End.
Introduction Chapter 1: roadmap 1.1 what is the Internet? 1.2 network edge  end systems, access networks, links 1.3 network core  packet switching, circuit.
RSC Part I: Introduction Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are, mainly, part of the companion slides to.
Lecture 5: Internetworking: A closer View By Dr. Najla Al-Nabhan Introduction 1-1.
Introduction1-1 Chapter 1 Computer Networks and the Internet Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose,
Computer Networks Performance Metrics
1 Computer Networks & The Internet Lecture 4 Imran Ahmed University of Management & Technology.
Introduction 1-1 Chapter 1 Part 3 Delay, loss and throughput These slides derived from Computer Networking: A Top Down Approach, 6 th edition. Jim Kurose,
CS 3830 Day 4 Introduction 1-1. Announcements  No office hour 12pm-1pm today only  Quiz on Friday  Program 1 due on Friday (put in DropBox on S drive)
Introduction 1-1 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching,
EEC-484/584 Computer Networks
Chapter 1: roadmap 1.1 what is the Internet? 1.2 network edge  end systems, access networks, links 1.3 network core  packet switching, circuit switching,
Network Behaviour & Impairments
“Real” Internet delays and routes  What do “real” Internet delay & loss look like?  Traceroute program: provides delay measurement from source to router.
A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their original slides that accompany the.
CSEN 404 Introduction to Networks Amr El Mougy Lamia AlBadrawy.
Introduction1-1 Data Communications and Computer Networks Chapter 1 CS 3830 Lecture 3 Omar Meqdadi Department of Computer Science and Software Engineering.
A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their original slides that accompany the.
MITM753: Advanced Computer Networks
2017 session 1 TELE3118 Network Technologies
Computer Networks Dr. Adil Yousif CS Lecture 1.
Introduction to Networks
Computer Networks CS1652 Jack Lange University of Pittsburgh
Lec # 22 Data Communication Muhammad Waseem Iqbal.
Administrative Things
CS 381 Introduction to computer networks
CS 5565 Network Architecture and Protocols
Chapter 1: Introduction
Chapter 1: roadmap 1.1 what is the Internet? 1.2 network edge
CS4470 Computer Networking Protocols
RSC Part II: Network Layer 1. Basic Concepts
CSE 3461/5461 Reading: Chapter 1, Kurose and Ross
Chapter 1 Introduction Reading assignment: Chapter 1 of Kurose & Ross
Chapter 1 Introduction Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley Prof. Hong Liu for ECE369 Adapted from.
Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge
Lecture 2: Internet Structure & Internetworking
Comp 365 Computer Networks Chapter 1 Part 2 Network Core Fall 2014
Chapter 1: Introduction Internet Structure & Protocols
CS Lecture 2 Network Performance
Computer Networks Performance Metrics
How do loss and delay occur?
EEC-484/584 Computer Networks
Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge
Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge
CSE 3461/5461 Reading: Chapter 1, Kurose and Ross
Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge
Lecture 1: introduction
Lecture 2 Application Layer
Chapter 1 Introduction Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Comp 410 AOS Packet Switching
Chapter 1 Introduction Computer Networking: A Top Down Approach
Presentation transcript:

Session 2 INST 346 Technologies, Infrastructure and Architecture The Internet Session 2 INST 346 Technologies, Infrastructure and Architecture

Network structure network edge: hosts: clients and servers servers often in data centers mobile network global ISP regional ISP home network institutional access networks, physical media: wired, wireless communication links network core: interconnected routers network of networks

The network core mesh of interconnected routers packet-switching: hosts break application-layer messages into packets forward packets from one router to the next, across links on path from source to destination each packet transmitted at full link capacity

Internet structure: network of networks Tier 1 ISP Tier 1 ISP Google IXP IXP IXP Regional ISP Regional ISP access ISP access ISP access ISP access ISP access ISP access ISP access ISP access ISP at center: small # of well-connected large networks “tier-1” commercial ISPs (e.g., Level 3, Sprint, AT&T, NTT), national & international coverage content provider network (e.g., Google): private network that connects it data centers to Internet, often bypassing tier-1, regional ISPs

Encapsulation source destination application transport network link message M application transport network link physical segment Ht M Ht datagram Ht Hn M Hn frame Ht Hn Hl M link physical switch destination network link physical Ht Hn Hl M Ht Hn Hl M application transport network link physical Ht Hn M router

Why layering? dealing with complex systems: explicit structure allows identification, relationship of complex system’s pieces layered reference model for discussion modularization eases maintenance, updating of system change of implementation of layer’s service transparent to rest of system e.g., change in gate procedure doesn’t affect rest of system layering considered harmful?

Link Layer Example: Parity checking single bit parity: detect single bit errors

Packet-switching: store-and-forward L bits per packet 3 2 1 source destination R bps R bps takes L/R seconds to transmit (push out) L-bit packet into link at R bps store and forward: entire packet must arrive at router before it can be transmitted on next link one-hop numerical example: L = 7.5 Mbits R = 1.5 Mbps one-hop transmission delay = 5 sec end-end delay = 2L/R (assuming zero propagation delay) more on delay shortly …

Two key network-core functions routing: determines source- destination route taken by packets routing algorithms forwarding: move packets from router’s input to appropriate router output routing algorithm local forwarding table header value output link 0100 0101 0111 1001 3 2 1 1 2 3 0111 destination address in arriving packet’s header

Throughput throughput: rate (bits/time unit) at which bits transferred between sender/receiver instantaneous: rate at given point in time average: rate over longer period of time server, with file of F bits to send to client link capacity Rs bits/sec server sends bits (fluid) into pipe pipe that can carry fluid at rate Rs bits/sec) Rc bits/sec) link capacity Rc bits/sec

Packet Switching: queueing delay, loss R = 100 Mb/s D R = 1.5 Mb/s B E queue of packets waiting for output link queuing and loss: if arrival rate (in bits) to link exceeds transmission rate of link for a period of time: packets will queue, wait to be transmitted on link packets can be dropped (lost) if memory (buffer) fills up

How do loss and delay occur? packets queue in router buffers packet arrival rate to link (temporarily) exceeds output link capacity packets queue, wait for turn packet being transmitted (delay) A free (available) buffers: arriving packets dropped (loss) if no free buffers packets queueing (delay) B

average queueing delay R: link bandwidth (bps) L: packet length (bits) a: average packet arrival rate average queueing delay traffic intensity = La/R La/R ~ 0: avg. queueing delay small La/R -> 1: avg. queueing delay large La/R > 1: more “work” arriving than can be serviced, average delay infinite! La/R ~ 0 La/R -> 1 * Check online interactive animation on queuing and loss

Four sources of packet delay propagation nodal processing queueing dnodal = dproc + dqueue + dtrans + dprop A B transmission dproc: nodal processing check bit errors determine output link typically < msec dqueue: queueing delay time waiting at output link for transmission depends on congestion level of router

Four sources of packet delay transmission A propagation B nodal processing queueing dnodal = dproc + dqueue + dtrans + dprop dtrans: transmission delay: L: packet length (bits) R: link bandwidth (bps) dtrans = L/R dprop: propagation delay: d: length of physical link s: propagation speed (~2x108 m/sec) dprop = d/s dtrans and dprop very different * Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/ * Check out the Java applet for an interactive animation on trans vs. prop delay 15

Packet loss queue (aka buffer) preceding link in buffer has finite capacity packet arriving to full queue dropped (aka lost) lost packet may be retransmitted by previous node, by source end system, or not at all buffer (waiting area) packet being transmitted A B packet arriving to full buffer is lost * Check out the Java applet for an interactive animation on queuing and loss

“Real” Internet delays and routes what do “real” Internet delay & loss look like? traceroute program: provides delay measurement from source to router along end-end Internet path towards destination. For all i: sends three packets that will reach router i on path towards destination router i will return packets to sender sender times interval between transmission and reply. 3 probes 3 probes 3 probes

“Real” Internet delays, routes traceroute: gaia.cs.umass.edu to www.eurecom.fr 3 delay measurements from gaia.cs.umass.edu to cs-gw.cs.umass.edu 1 cs-gw (128.119.240.254) 1 ms 1 ms 2 ms 2 border1-rt-fa5-1-0.gw.umass.edu (128.119.3.145) 1 ms 1 ms 2 ms 3 cht-vbns.gw.umass.edu (128.119.3.130) 6 ms 5 ms 5 ms 4 jn1-at1-0-0-19.wor.vbns.net (204.147.132.129) 16 ms 11 ms 13 ms 5 jn1-so7-0-0-0.wae.vbns.net (204.147.136.136) 21 ms 18 ms 18 ms 6 abilene-vbns.abilene.ucaid.edu (198.32.11.9) 22 ms 18 ms 22 ms 7 nycm-wash.abilene.ucaid.edu (198.32.8.46) 22 ms 22 ms 22 ms 8 62.40.103.253 (62.40.103.253) 104 ms 109 ms 106 ms 9 de2-1.de1.de.geant.net (62.40.96.129) 109 ms 102 ms 104 ms 10 de.fr1.fr.geant.net (62.40.96.50) 113 ms 121 ms 114 ms 11 renater-gw.fr1.fr.geant.net (62.40.103.54) 112 ms 114 ms 112 ms 12 nio-n2.cssi.renater.fr (193.51.206.13) 111 ms 114 ms 116 ms 13 nice.cssi.renater.fr (195.220.98.102) 123 ms 125 ms 124 ms 14 r3t2-nice.cssi.renater.fr (195.220.98.110) 126 ms 126 ms 124 ms 15 eurecom-valbonne.r3t2.ft.net (193.48.50.54) 135 ms 128 ms 133 ms 16 194.214.211.25 (194.214.211.25) 126 ms 128 ms 126 ms 17 * * * 18 * * * 19 fantasia.eurecom.fr (193.55.113.142) 132 ms 128 ms 136 ms trans-oceanic link * means no response (probe lost, router not replying) * Do some traceroutes from exotic countries at www.traceroute.org

Multi-hop Throughput Rs < Rc What is average end-end throughput? Rc bits/sec Rs bits/sec Rs > Rc What is average end-end throughput? Rs bits/sec Rc bits/sec link on end-end path that constrains end-end throughput bottleneck link

An alternative: Multiplexing 4 users Example: FDM frequency time TDM frequency time Two simple multiple access control techniques. Each mobile’s share of the bandwidth is divided into portions for the uplink and the downlink. Also, possibly, out of band signaling. As we will see, used in AMPS, GSM, IS-54/136 Multiplexing makes “circuit switching” more efficient

Packet switching versus circuit switching packet switching allows more users to use network! example: 1 Mb/s link each user: 100 kb/s when “active” active 10% of time circuit-switching: 10 users packet switching: with 35 users, probability > 10 active at same time is less than .0004 * ….. N users 1 Mbps link Q: how did we get value 0.0004? Q: what happens if > 35 users ? * Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Acing the Homework See what parts you find easy Work with friends to master the rest Set it aside and then come back and check it Office hours on Monday are well timed! AVW 3126 from 3:30-4:30 PM Submit early and often Sharp cutoff at 5 PM Tuesday, no credit for late

Before You Go On a sheet of paper, answer the following (ungraded) question (no names, please): What was the muddiest point in today’s class?

What’s the Internet: a service view mobile network global ISP regional ISP home network institutional infrastructure that provides services to applications: Web, VoIP, email, games, e-commerce, social nets, … provides programming interface to apps hooks that allow sending and receiving app programs to “connect” to Internet provides service options, analogous to postal service

What’s a protocol? human protocols: network protocols: “what’s the time?” “I have a question” introductions … specific messages sent … specific actions taken when messages received, or other events network protocols: machines rather than humans all communication activity in Internet governed by protocols protocols define format, order of messages sent and received among network entities, and actions taken on message transmission, receipt

What’s a protocol? a human protocol and a computer network protocol: Hi TCP connection request Hi TCP connection response Got the time? Get http://www.awl.com/kurose-ross 2:00 <file> time Q: other human protocols?

copy of all Ethernet frames sent/received packet capture (pcap) analyzer copy of all Ethernet frames sent/received Transport (TCP/UDP) Network (IP) Link (Ethernet) Physical application (www browser, email client) OS