Some CEPC SRF considerations

Slides:



Advertisements
Similar presentations
Update of 3.2 km ILC DR design (DMC3) Dou Wang, Jie Gao, Gang Xu, Yiwei Wang (IHEP) IWLC2010 Monday 18 October - Friday 22 October 2010 Geneva, Switzerland.
Advertisements

Accelerator Design of CEPC PDR and APDR Scheme Dou Wang, Jie Gao, Feng Su, Yuan Zhang, Ming Xiao, Yiwei Wang, Bai Sha, Huiping Geng, Tianjian Bian, Na.
CEPC parameter choice and partial double ring design
Interaction region design for the partial double ring scheme
CEPC APDR Study Zhenchao LIU
HOM coupler design and collective instability study
100km CEPC parameter and lattice design
The Studies of Dynamic Aperture on CEPC
CEPC Superconducting RF System Design
CEPC parameter optimization and lattice design
Primary estimation of CEPC beam dilution and beam halo
The 13th Symposium on Accelerator Physics
Cavity-beam interaction and Longitudinal beam dynamics for CEPC DR&APDR 宫殿君
Issues in CEPC pretzel and partial double ring scheme design
Optimization of CEPC Dynamic Aperture
Lattice design for CEPC PDR
Status of CEPC lattice design
CEPC Booster Design Dou Wang, Chenghui Yu, Tianjian Bian, Xiaohao Cui, Chuang Zhang, Yudong Liu, Na Wang, Daheng Ji, Jiyuan Zhai, Wen Kang, Cai Meng, Jie.
Lattice design for CEPC PDR
Beam Loading Effect in CEPC APDR
CEPC-SppC Accelerator CDR Copmpletion at the end of 2017
CEPC APDR SRF and beam dynamics study
CEPC Partial Double Ring Lattice Design and DA Study
The design of interaction region
DA study for CEPC Main Ring
DA Study for the CEPC Partial Double Ring Scheme
CEPC APDR SRF considerations(3)
Hongbo Zhu (IHEP, Beijing) On behalf of the CEPC Study Group
CEPC partial double ring scheme and crab-waist parameters
CEPC Injector Damping Ring
CEPC parameter optimization and lattice design
Interaction region design for the partial double ring scheme
CEPC partial double ring scheme and crab-waist parameters
Comparison of the final focus design
LHC (SSC) Byung Yunn CASA.
Lattice design for the CEPC collider ring
CEPC APDR and PDR scheme
CEPC partial double ring FFS design
CEPC advanced partial double ring scheme
CEPC partial double ring FFS design
Lattice design for the CEPC collider ring
CEPC parameter optimization and lattice design
CEPC DA optimization with downhill Simplex
CEPC Partial Double Ring Lattice Design and DA Study
Update of DA Study for the CEPC Partial Double Ring Scheme
CEPC parameter optimization and lattice design
CEPC APDR SRF considerations(4) -LEP Cavity Voltage &BBU
Beam-Beam Effects in High-Energy Colliders:
CEPC parameter and DA optimization
Update of Lattice Design for CEPC Main Ring
CEPC Partial Double Ring Parameter Update
CEPC optics and booster optics
Update of Lattice Design for CEPC Main Ring
Lattice design for double ring scheme of CEPC main ring
Update of lattice design for CEPC main ring
CEPC APDR SRF and beam dynamics study
CEPC SRF System Jiyuan Zhai
Lattice design and dynamic aperture optimization for CEPC main ring
Simulation check of main parameters (wd )
Lattice Design of the Collider Ring toward TDR
Lattice design for CEPC PDR
Lattice design for CEPC
CEPC APDR and PDR scheme
CEPC parameter optimization and lattice design
CEPC SRF Parameters (100 km Main Ring)
Lattice design for CEPC PDR
Parameters Changed in New MEIC Design
RF Parameters for New 2.2 km MEIC Design
MEIC Alternative Design Part III
CEPC Parameter /DA optimization with downhill Simplex
Presentation transcript:

Some CEPC SRF considerations Zhenchao LIU 2016.4.8

Contents Introduction Input coupler power issue RF deflecting and synchrotron radiation in cavity

Primary parameter for CEPC double ring (wangdou20160219)   Pre-CDR H-high lumi. H-low power Z Number of IPs 2 Energy (GeV) 120 45.5 Circumference (km) 54 SR loss/turn (GeV) 3.1 2.96 0.062 Half crossing angle (mrad) 14.5 15 11.5 Piwinski angle 2.5 2.6 8.5 Ne/bunch (1011) 3.79 2.85 2.81 2.67 0.46 Bunch number 50 40 44 1100 Beam current (mA) 16.6 16.9 10.1 10.5 45.4 SR power /beam (MW) 51.7 30 31.2 2.8 Bending radius (km) 6.1 6.2 Momentum compaction (10-5) 3.4 3.0 2.2 3.5 IP x/y (m) 0.8/0.0012 0.306/0.0012 0.25/0.00136 0.22/0.001 0.268 /0.00124 0.08/0.001 Emittance x/y (nm) 6.12/0.018 3.34/0.01 2.45/0.0074 2.67/0.008 2.06 /0.0062 0.62/0.002 Transverse IP (um) 69.97/0.15 32/0.11 24.8/0.1 24.3/0.09 23.5/0.088 7/0.046 x/IP 0.118 0.04 0.03 0.032 0.005 y/IP 0.083 0.11 0.084 VRF (GV) 6.87 3.7 3.62 3.6 3.53 0.12 f RF (MHz) 650 Nature z (mm) 2.14 3.3 3.2 3.9 Total z (mm) 2.65 4.4 4.1 4.2 4.0 HOM power/cavity (kw) 1.5 1.3 0.99 Energy spread (%) 0.13 0.05 Energy acceptance (%) Energy acceptance by RF (%) 6 2.1 1.1 n 0.23 0.49 0.47 0.27 Life time due to beamstrahlung_cal (minute) 47 53 36 41 32 F (hour glass) 0.68 0.73 0.82 0.69 0.81 0.95 Lmax/IP (1034cm-2s-1) 2.04 2.97 2.03 2.01 3.61

Advantage: Avoid pretzel orbit Accommodate more bunches at Z/W energy Reduce AC power with crab waist collision bypass (pp) bypass (pp)

Primary parameter for CEPC double ring (wangdou20160219)   Pre-CDR H-high lumi. H-low power Z Number of IPs 2 Energy (GeV) 120 45.5 Circumference (km) 54 SR loss/turn (GeV) 3.1 2.96 0.062 Half crossing angle (mrad) 14.5 15 11.5 Piwinski angle 2.5 2.6 8.5 Ne/bunch (1011) 3.79 2.85 2.81 2.67 0.46 Bunch number 50 40 44 1100 Beam current (mA) 16.6 16.9 10.1 10.5 45.4 SR power /beam (MW) 51.7 30 31.2 2.8 Bending radius (km) 6.1 6.2 Momentum compaction (10-5) 3.4 3.0 2.2 3.5 IP x/y (m) 0.8/0.0012 0.306/0.0012 0.25/0.00136 0.22/0.001 0.268 /0.00124 0.08/0.001 Emittance x/y (nm) 6.12/0.018 3.34/0.01 2.45/0.0074 2.67/0.008 2.06 /0.0062 0.62/0.002 Transverse IP (um) 69.97/0.15 32/0.11 24.8/0.1 24.3/0.09 23.5/0.088 7/0.046 x/IP 0.118 0.04 0.03 0.032 0.005 y/IP 0.083 0.11 0.084 VRF (GV) 6.87 3.7 3.62 3.6 3.53 0.12 f RF (MHz) 650 Nature z (mm) 2.14 3.3 3.2 3.9 Total z (mm) 2.65 4.4 4.1 4.2 4.0 HOM power/cavity (kw) 1.5 1.3 0.99 Energy spread (%) 0.13 0.05 Energy acceptance (%) Energy acceptance by RF (%) 6 2.1 1.1 n 0.23 0.49 0.47 0.27 Life time due to beamstrahlung_cal (minute) 47 53 36 41 32 F (hour glass) 0.68 0.73 0.82 0.69 0.81 0.95 Lmax/IP (1034cm-2s-1) 2.04 2.97 2.03 2.01 3.61

Accelerator gradient decrease in one RF cavity (H-high lumi.) The peak beam power is 4.9MW@15MV/m Assume 4.9MW input power & 15MV/m (5cell cavity) t IP IP t Final Eacc/Initial Eacc Z.C. Liu modified on J.Y. Zhai’s figure RF cycles

Accelerator gradient decrease in one RF cavity (H-high lumi.) The peak RF power is very high at the bunch train passing period. The cavity field gradient will decrease a lot if the input power much lower than the beam power. The peak beam power is 4.9MW@15MV/m Assume 300kW input power & 15MV/m (5cell cavity) Final Eacc/Initial Eacc Final Eacc/Initial Eacc Initial Eacc(MV/m) RF cycles Field decrease in one cavity at the bunch train passing period Field decrease vs. various initial field gradient of the cavity

Accelerator gradient decrease in one RF cavity (H-high lumi.) The head bunch and tail bunch get different energy. The ratio of Etail/Ehead is about 0.8@15MV/m, this will make the bunch energy spread larger than 0.13% . Higher field gradient will give a higher Etail/Ehead when the input power is not enough. Final Eacc/Initial Eacc Initial Eacc(MV/m) Field decrease vs. various initial field gradient of the cavity

Situation for the cavity close to IP The field decrease is much worse for the cavity close to the IP as another bunch train is coming when one bunch train passed. Assume 300kW input power (5cell cavity) The ratio of Final Eacc/Initial Eacc is down to 0.2 at low initial field. Final Eacc/Initial Eacc Initial Eacc(MV/m) These cavities

Primary parameter for CEPC double ring (wangdou20160219)   Pre-CDR H-high lumi. H-low power Z Number of IPs 2 Energy (GeV) 120 45.5 Circumference (km) 54 SR loss/turn (GeV) 3.1 2.96 0.062 Half crossing angle (mrad) 14.5 15 11.5 Piwinski angle 2.5 2.6 8.5 Ne/bunch (1011) 3.79 2.85 2.81 2.67 0.46 Bunch number 50 40 44 1100 Beam current (mA) 16.6 16.9 10.1 10.5 45.4 SR power /beam (MW) 51.7 30 31.2 2.8 Bending radius (km) 6.1 6.2 Momentum compaction (10-5) 3.4 3.0 2.2 3.5 IP x/y (m) 0.8/0.0012 0.306/0.0012 0.25/0.00136 0.22/0.001 0.268 /0.00124 0.08/0.001 Emittance x/y (nm) 6.12/0.018 3.34/0.01 2.45/0.0074 2.67/0.008 2.06 /0.0062 0.62/0.002 Transverse IP (um) 69.97/0.15 32/0.11 24.8/0.1 24.3/0.09 23.5/0.088 7/0.046 x/IP 0.118 0.04 0.03 0.032 0.005 y/IP 0.083 0.11 0.084 VRF (GV) 6.87 3.7 3.62 3.6 3.53 0.12 f RF (MHz) 650 Nature z (mm) 2.14 3.3 3.2 3.9 Total z (mm) 2.65 4.4 4.1 4.2 4.0 HOM power/cavity (kw) 1.5 1.3 0.99 Energy spread (%) 0.13 0.05 Energy acceptance (%) Energy acceptance by RF (%) 6 2.1 1.1 n 0.23 0.49 0.47 0.27 Life time due to beamstrahlung_cal (minute) 47 53 36 41 32 F (hour glass) 0.68 0.73 0.82 0.69 0.81 0.95 Lmax/IP (1034cm-2s-1) 2.04 2.97 2.03 2.01 3.61

Accelerator gradient decrease in one RF cavity(H-low power) The peak RF power is very high at the bunch train passing period. The cavity field gradient will decrease a lot if the input power much lower than the beam power. The peak beam power is 2.9MW@15MV/m Assume 300kW input power & 15MV/m (5cell cavity) Final Eacc/Initial Eacc Final Eacc/Initial Eacc Initial Eacc(MV/m) RF cycles Field decrease in one cavity at the bunch train passing period Field decrease vs. various initial field gradient of the cavity

Primary parameter for CEPC double ring (wangdou20160219)   Pre-CDR H-high lumi. H-low power Z Number of IPs 2 Energy (GeV) 120 45.5 Circumference (km) 54 SR loss/turn (GeV) 3.1 2.96 0.062 Half crossing angle (mrad) 14.5 15 11.5 Piwinski angle 2.5 2.6 8.5 Ne/bunch (1011) 3.79 2.85 2.81 2.67 0.46 Bunch number 50 40 44 1100 Beam current (mA) 16.6 16.9 10.1 10.5 45.4 SR power /beam (MW) 51.7 30 31.2 2.8 Bending radius (km) 6.1 6.2 Momentum compaction (10-5) 3.4 3.0 2.2 3.5 IP x/y (m) 0.8/0.0012 0.306/0.0012 0.25/0.00136 0.22/0.001 0.268 /0.00124 0.08/0.001 Emittance x/y (nm) 6.12/0.018 3.34/0.01 2.45/0.0074 2.67/0.008 2.06 /0.0062 0.62/0.002 Transverse IP (um) 69.97/0.15 32/0.11 24.8/0.1 24.3/0.09 23.5/0.088 7/0.046 x/IP 0.118 0.04 0.03 0.032 0.005 y/IP 0.083 0.11 0.084 VRF (GV) 6.87 3.7 3.62 3.6 3.53 0.12 f RF (MHz) 650 Nature z (mm) 2.14 3.3 3.2 3.9 Total z (mm) 2.65 4.4 4.1 4.2 4.0 HOM power/cavity (kw) 1.5 1.3 0.99 Energy spread (%) 0.13 0.05 Energy acceptance (%) Energy acceptance by RF (%) 6 2.1 1.1 n 0.23 0.49 0.47 0.27 Life time due to beamstrahlung_cal (minute) 47 53 36 41 32 F (hour glass) 0.68 0.73 0.82 0.69 0.81 0.95 Lmax/IP (1034cm-2s-1) 2.04 2.97 2.03 2.01 3.61

Accelerator gradient decrease in one RF cavity (Z) The peak RF power is very high at the bunch train passing period. The cavity field gradient will decrease a lot if the input power much lower than the beam power. The peak beam power is 13.8MW@15MV/m Assume 300kW input power & 15MV/m (5cell cavity) Final Eacc/Initial Eacc Final Eacc/Initial Eacc Initial Eacc(MV/m) RF cycles Field decrease in one cavity at the bunch train passing period Field decrease vs. various initial field gradient of the cavity

Input power requirements The input power in pulse should be equal to the beam power of bunch train (if do not consider reflection ……). Or the bunch distance from each other is enough to power up the cavity field again. Higher Eacc is much better when input power is not enough as the stored energy in cavity is proportional to Eacc^2. Reliable ceramic window for the high peak input power. The design is very challenging for the RF!!!!!

New parameters By J.Y. Zhai’s report

Limitations on the power coupler The average power of input coupler is ~300kW The peak power of input coupler is ~1MW . The maximum power is limited by the ceramic window

S. Belomestnykh,OVERVIEW OF INPUT POWER COUPLER DEVELOPMENTS PULSED AND CW,WE305, SRF2007

What things to do? Reliable high power input coupler design! New ceramic window design and new ceramic material which can pass much higher power with low heat. Better cooling structure for the ceramic window. Multi-window? It is also very essential for other project which need high input power! Developing high power coupler!

Beam off-axis in cavity Bunches may be not on the cavity axis, especially in the single ring condition. Bunches off-axis will be deflected by the cavity magnetic field P(W/m) H(A/m) B(mT) Off-axis (mm)

Assume Bmax=80mT (Bpk/Eacc=4 & Eacc=20MV/m) Phase 90deg (Emax at 0deg) Off-axis (mm) B (mT) Pmax(W/m) Ec (keV) 2 1.4 1.1 13.4 5 3.5 7.1 33.5 10 7.0 28.6 67.1 15 10.5 64.4 100.6 25 17.4 176.8 166.7 Consider phase, The P = Pmax sinφ It is more serious operating on large phase angle!

the length of the straight RF part is 849.6m, the radius of synchrotron radiation is 849.6 x sin(4.258urad) = 3.6mm If the beam direction is not parallel to cavity axis, synchrotron radiation of the beam may irradiate on the cavity. It is a heat source to the cavity LHe system 4.258urad

Thanks!