Find: ZenithDA SDDA = [ft] 89 29’15” 89 46’30” D 90 14’30” A

Slides:



Advertisements
Similar presentations
Pre-Calculus Chapter 6 Additional Topics in Trigonometry.
Advertisements

Profile Leveling.
Section 8.5. Find the area of parallelograms. Base of a parallelogram Height of a parallelogram Parallelogram Rhombus.
Solve an equation using subtraction EXAMPLE 1 Solve x + 7 = 4. x + 7 = 4x + 7 = 4 Write original equation. x + 7 – 7 = 4 – 7 Use subtraction property of.
13-3: Radian Measure Radian Measure There are 360º in a circle The circumference of a circle = 2r. So if the radius of a circle were 1, then there a.
Differential Leveling
Differential Leveling
EXAMPLE 5 Find leg lengths using an angle of elevation SKATEBOARD RAMP You want to build a skateboard ramp with a length of 14 feet and an angle of elevation.
EXAMPLE 5 Find leg lengths using an angle of elevation SKATEBOARD RAMP You want to build a skateboard ramp with a length of 14 feet and an angle of elevation.
Table of Contents Unit 1- Understand the Problem Unit 2- Gather Information Unit 3-Develop Solutions Unit 4-Implement a Solution Unit 5-Test and Evaluate.
Copyright © 2005 Pearson Education, Inc.. Chapter 2 Acute Angles and Right Triangles.
Is there anything invariant about circles?. Bell Ringer CDCD Compare the ratio of the circumference to the diameter C = 9.42 D = 3 C =
to T2.3c We will learn to Solve Double Triangles Please get a handout from the table by the door.
Raffle Game , 4.8 Review. Problem 1 Convert to degrees.
Copyright © Cengage Learning. All rights reserved. CHAPTER Radian Measure 3.
Chap 7 – Differential Leveling
Given the parallelogram at right, we are able to determine that its area is equal to Activity You can use a parallelogram to find the area of a triangle.
Solve an equation using addition EXAMPLE 2 Solve x – 12 = 3. Horizontal format Vertical format x– 12 = 3 Write original equation. x – 12 = 3 Add 12 to.
WARM UP Find the area of an equilateral triangle with sides 8 ft.
EXAMPLE 1 Subtracting Integers –56 – (–9) = – = –47 –14 – 21 = –14 + (–21) = –35 Add the opposite of –9. Add. Add the opposite of 21. Add. a. –56.
Lesson Applying Differential Leveling Techniques.
1 Applications Stream cross sections Highways Canals Sewers Water mains Sidewalks Retaining walls Fences Application of Differential Leveling Introduction.
How to Navigate a Set of Field Notes….. First the Jargon… Benchmark Backsight Foresight Height of Instrument Elevation Turning Point Station.
Warm-up. Law of Sines and Cosines Students will be able to apply the Law of Sines and the Law of Cosines to solve problems involving oblique triangles.
Circumference and Area of Circles Section 8.7. Goal Find the circumference and area of circles.
Area of Squares and Rectangles Section 8.3. Goal Find the area of squares and rectangles.
Using Tangent The angle formed by a horizontal line and a line of sight to an object above the horizontal line. You can use the angle of elevation as.
Law of Sines  Use the Law of Sines to solve oblique triangles (AAS or ASA).  Use the Law of Sines to solve oblique triangles (SSA).  Find the.
Copyright © 2005 Pearson Education, Inc.. Chapter 2 Acute Angles and Right Triangles.
Profile Leveling.
Surveying a Level Loop Surveying a Level Loop
Surveying a Level Loop Surveying a Level Loop
Surveying a Level Loop Surveying a Level Loop
Splash Screen.
Surveying a Level Loop Surveying a Level Loop
Unit: Surveying Lesson: Differential Leveling
Engineering Surveying
Find: max L [ft] 470 1,330 1,780 2,220 Pmin=50 [psi] hP=130 [ft] tank
Find: y1 Q=400 [gpm] 44 Sand y2 y1 r1 r2 unconfined Q
Chapter 8 The Trigonometric Functions
Level Loop (or Closed Circuit)
Find: Q gal min 1,600 1,800 2,000 2,200 Δh pipe entrance fresh water h
Section 4.1: Angles and Their Measures
Find: R [ft] y [ft] C (5,6) B (2,5) A (0,0) x [ft]
Check it out! 1.2.1: Normal Distributions and the 68–95–99.7 Rule
Find: KR,b wave direction αo plan contours view beach db = 15 [ft]
Find: Fcr [lb/in2] Fcr E = 2.9 * 107 [lb/in2] fy = 36,000 [lb/in2]
11.4 Circumference and Arc Length
Find: Average Slope AD [%]
Find: R’ [ft] A V’ V CAB=1,000 [ft] LV’V=20 [ft] I=60 B’ B
Find: min D [in] = P=30,000 people 18+P/1000 PF= 4+P/1000
8.1.1 Solving Simple Equations
Find: F [lbf] in order to keep the gate vertical air F 267 water 293
Find: AreaABC [ft2] C A B C’ 43,560 44,600 44,630 45,000
Lesson 6: Solving Problems with Triangles
Find: STAB I1=90 C 2,500 [ft] 2,000 [ft] B D A curve 1 R1=R2 F curve 2
Find: Omax [cfs] Given Data 29,000 33,000 37,000 41,000 inflow outflow
Find: LBC [ft] A Ax,y= ( [ft], [ft])
Find: L [ft] L L d A) 25 B) 144 C) 322 D) 864 T = 13 [s] d = 20 [ft]
Find: αNAB N STAB=7+82 B STAA= D=3 20’ 00” A O o o
Find: hT Section Section
Find: STAC B C O A IAB R STAA= IAB=60
Chapter 8 The Trigonometric Functions
Find: AreaABCD [acres]
Surveying a Level Loop Surveying a Level Loop
Differential Leveling
Find: AreaABCD [ft2] C 27,800 30,500 B 33,200 36,000 N A D set up
Geometry Section 7.7.
Stream Crossing Bootcamp
Trigonometry Skill 41.
Presentation transcript:

Find: ZenithDA SDDA = 155.3 [ft] 89 29’15” 89 46’30” D 90 14’30” A BS HI FS Elev A 3.27 ElevA HIAB dd B 4.56 4.31 ElevB HIBC dd C 5.34 4.28 31.69 HICD dd D 5.97 ElevD SDDA = 155.3 [ft] 89 29’15” 89 46’30” 90 14’30” 90 30’45” o Find the zenith angle D A. [pause] In this problem, a level survey was performed --- D o A plan view o o B C

Find: ZenithDA SDDA = 155.3 [ft] 89 29’15” 89 46’30” D 90 14’30” A BS HI FS Elev A 3.27 ElevA HIAB dd B 4.56 4.31 ElevB HIBC dd C 5.34 4.28 31.69 HICD dd D 5.97 ElevD SDDA = 155.3 [ft] 89 29’15” 89 46’30” 90 14’30” 90 30’45” o between Points A, B, C and D. The backsight readings and forsight readings --- D o A plan view o o B C

Find: ZenithDA SDDA = 155.3 [ft] 89 29’15” 89 46’30” D 90 14’30” A BS HI FS Elev A 3.27 ElevA HIAB dd B 4.56 4.31 ElevB HIBC dd C 5.34 4.28 31.69 HICD dd D 5.97 ElevD SDDA = 155.3 [ft] 89 29’15” 89 46’30” 90 14’30” 90 30’45” o have all been recorded, but the only elevation provided is at Point C. --- D o A plan view o o B C

Find: ZenithDA SDDA = 155.3 [ft] 89 29’15” 89 46’30” D 90 14’30” A BS HI FS Elev A 3.27 ElevA HIAB dd B 4.56 4.31 ElevB HIBC dd C 5.34 4.28 31.69 HICD dd D 5.97 ElevD SDDA = 155.3 [ft] 89 29’15” 89 46’30” 90 14’30” 90 30’45” o [pause] The problem statement provides the slope distance between --- D o A plan view o o B C

Find: ZenithDA SDDA = 155.3 [ft] 89 29’15” 89 46’30” D 90 14’30” A BS HI FS Elev A 3.27 ElevA HIAB dd B 4.56 4.31 ElevB HIBC dd C 5.34 4.28 31.69 HICD dd D 5.97 ElevD SDDA = 155.3 [ft] 89 29’15” 89 46’30” 90 14’30” 90 30’45” o Points D and A, but no height of instrument values are provided. --- D o A plan view o o B C

Find: ZenithDA SDDA = 155.3 [ft] 89 29’15” 89 46’30” D 90 14’30” A BS HI FS Elev A 3.27 ElevA HIAB dd B 4.56 4.31 ElevB HIBC dd C 5.34 4.28 31.69 HICD dd D 5.97 ElevD SDDA = 155.3 [ft] 89 29’15” 89 46’30” 90 14’30” 90 30’45” o so we’ll remove this column from our data table, at least for the time being. ---- D o A plan view o o B C

Find: ZenithDA SDDA = 155.3 [ft] 89 29’15” 89 46’30” D 90 14’30” A BS FS Elev A 3.27 ElevA B 4.56 4.31 ElevB C 5.34 4.28 31.69 D 5.97 ElevD SDDA = 155.3 [ft] 89 29’15” 89 46’30” 90 14’30” 90 30’45” o [pause] Also, all length measurements recorded in the data table --- D o A plan view o o B C

Find: ZenithDA all lengths are in feet SDDA = 155.3 [ft] 89 29’15” BS FS Elev are in feet A 3.27 ElevA B 4.56 4.31 ElevB C 5.34 4.28 31.69 D 5.97 ElevD SDDA = 155.3 [ft] 89 29’15” 89 46’30” 90 14’30” 90 30’45” o are in units of feet. [pause] To find the zenith angle D A, --- D o A plan view o o B C

Find: ZenithDA all lengths are in feet SDDA = 155.3 [ft] 89 29’15” BS FS Elev are in feet A 3.27 ElevA B 4.56 4.31 ElevB C 5.34 4.28 31.69 D 5.97 ElevD SDDA = 155.3 [ft] 89 29’15” 89 46’30” 90 14’30” 90 30’45” o we’ll consider a section view showing Point D, ---- D o A plan view o o B C

Find: ZenithDA all lengths are in feet X’ D X A plan A view D section BS FS Elev are in feet A 3.27 ElevA B 4.56 4.31 ElevB C 5.34 4.28 31.69 D 5.97 ElevD X’ D X and Point A. The zenith angle D A is the angle between a vertical line at Point D, ---- A plan A view D section view Section X-X’ B C

Find: ZenithDA ZDA all lengths are in feet X’ D X A plan A view D BS FS Elev are in feet A 3.27 ElevA B 4.56 4.31 ElevB C 5.34 4.28 31.69 D 5.97 ElevD ZDA X’ D X and the line segment connecting Points D and A. To better define this angle, we’ll add a Point A prime, ---- A plan A view D section view Section X-X’ B C

Find: ZenithDA ZDA all lengths are in feet X’ A’ D X A plan A view D BS FS Elev are in feet A 3.27 ElevA B 4.56 4.31 ElevB C 5.34 4.28 31.69 D 5.97 ElevD ZDA X’ A’ D X which is a projection of Point A, on to the vertical line segment through Point D. Now we’ll take a closer look at --- A plan A view D section view Section X-X’ B C

Find: ZenithDA ZDA A A’ D X’ A’ D X A plan A view D section view B C BS FS Elev A 3.27 ElevA B 4.56 4.31 ElevB D C 5.34 4.28 31.69 D 5.97 ElevD ZDA X’ A’ D X Triangle A, A prime, D. [pause] Zenith Angle D A, is sketched in, and we notice, ---- A plan A view D section view Section X-X’ B C

Find: ZenithDA ZDA A A’ D X’ A’ D X A plan A view D section view B C BS FS Elev ZDA A 3.27 ElevA B 4.56 4.31 ElevB D C 5.34 4.28 31.69 D 5.97 ElevD ZDA X’ A’ D X the cosine of Zenith Angle D A equals, the length of line segment --- A plan A view D section view Section X-X’ B C

Find: ZenithDA A A’ D LDA’ cos (ZDA)= LDA X’ D X A plan view B C BS FS Elev ZDA A 3.27 ElevA B 4.56 4.31 ElevB D LDA’ C 5.34 4.28 31.69 cos (ZDA)= D 5.97 ElevD LDA X’ D X D A prime, divided by length of line segment D A. So the zenith equal ---- A plan view B C

Find: ZenithDA A A’ D LDA’ cos (ZDA)= LDA X’ LDA’ D ZDA=cos-1 X A plan BS FS Elev ZDA A 3.27 ElevA B 4.56 4.31 ElevB D LDA’ C 5.34 4.28 31.69 cos (ZDA)= D 5.97 ElevD LDA X’ LDA’ D ZDA=cos-1 X the arc cosine of that quotient. The problem statement provides the slope distance D A as --- A plan LDA view B C

Find: ZenithDA A A’ D LDA’ cos (ZDA)= LDA X’ LDA’ D ZDA=cos-1 X A plan BS FS Elev ZDA A 3.27 ElevA B 4.56 4.31 ElevB D LDA’ C 5.34 4.28 31.69 cos (ZDA)= D 5.97 ElevD LDA X’ LDA’ D ZDA=cos-1 X 155.3 feet, but we don’t know the distance between Points D and A prime. --- A plan LDA view SDDA = 155.3 [ft] B C

? Find: ZenithDA A A’ D LDA’ cos (ZDA)= LDA X’ LDA’ D ZDA=cos-1 X A BS FS Elev ZDA A 3.27 ElevA B 4.56 4.31 ElevB D LDA’ C 5.34 4.28 31.69 ? cos (ZDA)= D 5.97 ElevD LDA X’ LDA’ D ZDA=cos-1 X [pause] To find this length, we’ll turn to the level survey data, --- A plan LDA view SDDA = 155.3 [ft] B C

? Find: ZenithDA A A’ D LDA’ cos (ZDA)= LDA X’ LDA’ D ZDA=cos-1 X A BS FS Elev ZDA A 3.27 ElevA B 4.56 4.31 ElevB D LDA’ C 5.34 4.28 31.69 ? cos (ZDA)= D 5.97 ElevD LDA X’ LDA’ D ZDA=cos-1 X and equate the length of line segment D A prime, to the elevation of Point A prime, minus --- A plan LDA view SDDA = 155.3 [ft] B C

? Find: ZenithDA A A’ D LDA’ cos (ZDA)= LDA LDA’ LDA’ = ElevA’ - ElevD BS FS Elev ZDA A 3.27 ElevA B 4.56 4.31 ElevB D LDA’ C 5.34 4.28 31.69 ? cos (ZDA)= D 5.97 ElevD LDA LDA’ LDA’ = ElevA’ - ElevD ZDA=cos-1 the elevation of Point D. Where the elevation of Point A prime, is equivalent to, the elevation of --- LDA SDDA = 155.3 [ft]

? Find: ZenithDA A A’ D LDA’ cos (ZDA)= LDA LDA’ LDA’ = ElevA’ - ElevD BS FS Elev ZDA A 3.27 ElevA B 4.56 4.31 ElevB D LDA’ C 5.34 4.28 31.69 ? cos (ZDA)= D 5.97 ElevD LDA LDA’ LDA’ = ElevA’ - ElevD ZDA=cos-1 Point A. The elevations for points A and D can be determined from --- LDA ElevA’ = ElevA SDDA = 155.3 [ft]

? Find: ZenithDA A A’ D LDA’ cos (ZDA)= LDA LDA’ LDA’ = ElevA’ - ElevD BS FS Elev ZDA A 3.27 ElevA B 4.56 4.31 ElevB D LDA’ C 5.34 4.28 31.69 ? cos (ZDA)= D 5.97 ElevD LDA LDA’ LDA’ = ElevA’ - ElevD ZDA=cos-1 the level survey data. [pause] To find the elevation at Point D, we’ll add the elevation from Point C, --- LDA ElevA’ = ElevA SDDA = 155.3 [ft]

? Find: ZenithDA A A’ D LDA’ cos (ZDA)= LDA LDA’ LDA’ = ElevA - ElevD BS FS Elev ZDA A 3.27 ElevA B 4.56 4.31 ElevB D LDA’ C 5.34 4.28 31.69 ? cos (ZDA)= D 5.97 ElevD LDA LDA’ LDA’ = ElevA - ElevD ZDA=cos-1 to the backsight reading at Point C, minus the foresight reading to Point D. After plugging in --- LDA ElevD = ElevC + BSC - FSD SDDA = 155.3 [ft]

? Find: ZenithDA A A’ D LDA’ cos (ZDA)= LDA LDA’ LDA’ = ElevA - ElevD BS FS Elev ZDA A 3.27 ElevA B 4.56 4.31 ElevB D LDA’ C 5.34 4.28 31.69 ? cos (ZDA)= D 5.97 ElevD LDA LDA’ LDA’ = ElevA - ElevD ZDA=cos-1 these values, the elevation at Point D equals, --- LDA ElevD = ElevC + BSC - FSD SDDA = 155.3 [ft]

? Find: ZenithDA A A’ D LDA’ cos (ZDA)= LDA LDA’ LDA’ = ElevA - ElevD BS FS Elev ZDA A 3.27 ElevA B 4.56 4.31 ElevB D LDA’ C 5.34 4.28 31.69 ? cos (ZDA)= D 5.97 31.06 LDA LDA’ LDA’ = ElevA - ElevD ZDA=cos-1 31.06 feet. The elevation at Point A is equal to the elevation at Point C, --- LDA ElevD = ElevC + BSC - FSD ElevD = 31.06 [ft] SDDA = 155.3 [ft]

? Find: ZenithDA A A’ D LDA’ cos (ZDA)= LDA LDA’ LDA’ = ElevA - ElevD BS FS Elev ZDA A 3.27 ElevA B 4.56 4.31 ElevB D LDA’ C 5.34 4.28 31.69 ? cos (ZDA)= D 5.97 31.06 LDA LDA’ LDA’ = ElevA - ElevD ZDA=cos-1 minus the backsight readings to Points A and B, plus the foresight readings to Points B and C. LDA ElevA = ElevC - BSB - BSA + FSB + FSC SDDA = 155.3 [ft]

? Find: ZenithDA A A’ D LDA’ cos (ZDA)= LDA LDA’ LDA’ = ElevA - ElevD BS FS Elev ZDA A 3.27 ElevA B 4.56 4.31 ElevB D LDA’ C 5.34 4.28 31.69 ? cos (ZDA)= D 5.97 31.06 LDA LDA’ LDA’ = ElevA - ElevD ZDA=cos-1 After making these substitutions, the elevation at Point A equals, --- LDA ElevA = ElevC - BSB - BSA + FSB + FSC SDDA = 155.3 [ft]

? Find: ZenithDA A A’ D LDA’ cos (ZDA)= LDA LDA’ LDA’ = ElevA - ElevD BS FS Elev ZDA A 3.27 32.45 B 4.56 4.31 ElevB D LDA’ C 5.34 4.28 31.69 ? cos (ZDA)= D 5.97 31.06 LDA LDA’ LDA’ = ElevA - ElevD ZDA=cos-1 32.45 feet. [pause] LDA ElevA = ElevC - BSB - BSA + FSB + FSC SDDA = 155.3 [ft] ElevA = 32.45 [ft]

? Find: ZenithDA A A’ D LDA’ cos (ZDA)= LDA LDA’ LDA’ = ElevA - ElevD BS FS Elev ZDA A 3.27 32.45 B 4.56 4.31 ElevB D LDA’ C 5.34 4.28 31.69 ? cos (ZDA)= D 5.97 31.06 LDA LDA’ LDA’ = ElevA - ElevD ZDA=cos-1 32.45 feet minus 31.06 feet, equals, --- LDA ElevA = ElevC - BSB - BSA + FSB + FSC SDDA = 155.3 [ft] ElevA = 32.45 [ft]

? Find: ZenithDA A A’ D LDA’ cos (ZDA)= LDA LDA’ LDA’ = ElevA - ElevD BS FS Elev ZDA A 3.27 32.45 B 4.56 4.31 ElevB D LDA’ C 5.34 4.28 31.69 ? cos (ZDA)= D 5.97 31.06 LDA LDA’ LDA’ = ElevA - ElevD ZDA=cos-1 1.39 feet, the length of line segment. [pause] Lastly, we’ll take the arc cosine of the quotient of --- LDA LDA’ = 1.39 [ft] SDDA = 155.3 [ft] ElevA = 32.45 [ft]

Find: ZenithDA A A’ D LDA’ cos (ZDA)= LDA LDA’ LDA’ = ElevA - ElevD BS FS Elev ZDA A 3.27 32.45 B 4.56 4.31 ElevB D LDA’ C 5.34 4.28 31.69 cos (ZDA)= D 5.97 31.06 LDA LDA’ LDA’ = ElevA - ElevD ZDA=cos-1 of the two line segments D A prime divided D A, and the Zenith angle D A equals, --- LDA LDA’ = 1.39 [ft] SDDA = 155.3 [ft] ElevA = 32.45 [ft]

Find: ZenithDA A A’ D SDDA = 155.3 [ft] LDA’ LDA’ = ElevA - ElevD BS FS Elev ZDA A 3.27 32.45 B 4.56 4.31 ElevB D C 5.34 4.28 31.69 SDDA = 155.3 [ft] D 5.97 31.06 LDA’ LDA’ = ElevA - ElevD ZDA=cos-1 89.48717 degrees. After converting this angle to degree minute second format, we have --- LDA LDA’ = 1.39 [ft] o ZDA=89.48717

Find: ZenithDA A A’ D SDDA = 155.3 [ft] LDA’ LDA’ = ElevA - ElevD BS FS Elev ZDA A 3.27 32.45 B 4.56 4.31 ElevB D C 5.34 4.28 31.69 SDDA = 155.3 [ft] D 5.97 31.06 LDA’ LDA’ = ElevA - ElevD ZDA=cos-1 89 degrees, 29 minutes and 14 seconds. [pause] LDA LDA’ = 1.39 [ft] o ZDA=89.48717 o ZDA=89 29’14”

Find: ZenithDA A A’ D SDDA = 155.3 [ft] LDA’ = 1.39 [ft] 89 29’15” BS FS Elev ZDA A 3.27 32.45 B 4.56 4.31 ElevB D C 5.34 4.28 31.69 SDDA = 155.3 [ft] D 5.97 31.06 LDA’ = 1.39 [ft] 89 29’15” 89 46’30” 90 14’30” 90 30’45” LDA’ o ZDA=cos-1 When reviewing the possible solutions, --- o LDA o o ZDA=89.48717 o o ZDA=89 29’14”

Find: ZenithDA A A’ D SDDA = 155.3 [ft] LDA’ = 1.39 [ft] 89 29’15” BS FS Elev ZDA A 3.27 32.45 B 4.56 4.31 ElevB D C 5.34 4.28 31.69 SDDA = 155.3 [ft] D 5.97 31.06 LDA’ = 1.39 [ft] 89 29’15” 89 46’30” 90 14’30” 90 30’45” LDA’ o ZDA=cos-1 the answer is A. o LDA AnswerA o o ZDA=89.48717 o o ZDA=89 29’14”

Find the average slope from point A, to Point D, as a percent [pause] In this problem, -----