Sampling the Fourier Transform

Slides:



Advertisements
Similar presentations
Ch.4 Fourier Analysis of Discrete-Time Signals
Advertisements

Chapter 5 The Fourier Transform. Basic Idea We covered the Fourier Transform which to represent periodic signals We assumed periodic continuous signals.
Chapter 8: The Discrete Fourier Transform
MSP15 The Fourier Transform (cont’) Lim, MSP16 The Fourier Series Expansion Suppose g(t) is a transient function that is zero outside the interval.
Lecture 8: Fourier Series and Fourier Transform
Discrete-Time Fourier Methods
Signals and Systems Discrete Time Fourier Series.
The Discrete Fourier Series
Systems: Definition Filter
Discrete-Time Fourier Series
Copyright © Shi Ping CUC Chapter 3 Discrete Fourier Transform Review Features in common We need a numerically computable transform, that is Discrete.
Discrete-Time and System (A Review)
DTFT And Fourier Transform
1 7.1 Discrete Fourier Transform (DFT) 7.2 DFT Properties 7.3 Cyclic Convolution 7.4 Linear Convolution via DFT Chapter 7 Discrete Fourier Transform Section.
1 Chapter 8 The Discrete Fourier Transform 2 Introduction  In Chapters 2 and 3 we discussed the representation of sequences and LTI systems in terms.
Fourier Series Summary (From Salivahanan et al, 2002)
Digital Signal Processing – Chapter 10
1 Review of Continuous-Time Fourier Series. 2 Example 3.5 T/2 T1T1 -T/2 -T 1 This periodic signal x(t) repeats every T seconds. x(t)=1, for |t|
Signal and Systems Prof. H. Sameti Chapter 5: The Discrete Time Fourier Transform Examples of the DT Fourier Transform Properties of the DT Fourier Transform.
Fourier Series. Introduction Decompose a periodic input signal into primitive periodic components. A periodic sequence T2T3T t f(t)f(t)
The Discrete Fourier Transform 主講人:虞台文. Content Introduction Representation of Periodic Sequences – DFS (Discrete Fourier Series) Properties of DFS The.
Chapter 4 Fourier transform Prepared by Dr. Taha MAhdy.
Zhongguo Liu_Biomedical Engineering_Shandong Univ. Chapter 8 The Discrete Fourier Transform Zhongguo Liu Biomedical Engineering School of Control.
Hossein Sameti Department of Computer Engineering Sharif University of Technology.
Real time DSP Professors: Eng. Julian S. Bruno Eng. Jerónimo F. Atencio Sr. Lucio Martinez Garbino.
Fourier Analysis of Discrete Time Signals
Digital Signal Processing
Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W.
Lecture 17: The Discrete Fourier Series Instructor: Dr. Ghazi Al Sukkar Dept. of Electrical Engineering The University of Jordan
Lecture 6: DFT XILIANG LUO 2014/10. Periodic Sequence  Discrete Fourier Series For a sequence with period N, we only need N DFS coefs.
Chapter 5 Finite-Length Discrete Transform
7- 1 Chapter 7: Fourier Analysis Fourier analysis = Series + Transform ◎ Fourier Series -- A periodic (T) function f(x) can be written as the sum of sines.
Linear filtering based on the DFT
DTFT continue (c.f. Shenoi, 2006)  We have introduced DTFT and showed some of its properties. We will investigate them in more detail by showing the associated.
Zhongguo Liu_Biomedical Engineering_Shandong Univ. Chapter 8 The Discrete Fourier Transform Zhongguo Liu Biomedical Engineering School of Control.
Lecture 18: The Discrete Fourier Transform Instructor: Dr. Ghazi Al Sukkar Dept. of Electrical Engineering The University of Jordan
Dr. Michael Nasief Digital Signal Processing Lec 7 1.
Husheng Li, UTK-EECS, Fall The specification of filter is usually given by the tolerance scheme.  Discrete Fourier Transform (DFT) has both discrete.
بسم الله الرحمن الرحيم Lecture (12) Dr. Iman Abuel Maaly The Discrete Fourier Transform Dr. Iman Abuel Maaly University of Khartoum Department of Electrical.
الفريق الأكاديمي لجنة الهندسة الكهربائية 1 Discrete Fourier Series Given a periodic sequence with period N so that The Fourier series representation can.
1 Chapter 8 The Discrete Fourier Transform (cont.)
Digital Image Processing Lecture 8: Fourier Transform Prof. Charlene Tsai.
UNIT-II FOURIER TRANSFORM
Chapter 8. The Discrete Fourier Transform
Review of DSP.
DIGITAL SIGNAL PROCESSING ELECTRONICS
FFT-based filtering and the
The Discrete Fourier Transform
Fourier Analysis of Signals Using DFT
لجنة الهندسة الكهربائية
Frequency Response of Rational System Functions
UNIT II Analysis of Continuous Time signal
2D Fourier transform is separable
Discrete Fourier Transform
Discrete-Time Signals: Sequences
Lecture 14 Outline: Discrete Fourier Series and Transforms
4.1 DFT In practice the Fourier components of data are obtained by digital computation rather than by analog processing. The analog values have to be.
لجنة الهندسة الكهربائية
Chapter 8 The Discrete Fourier Transform
Lecture 18 DFS: Discrete Fourier Series, and Windowing
Lecture 17 DFT: Discrete Fourier Transform
Lecture 15 DTFT: Discrete-Time Fourier Transform
Lecture 15 Outline: DFT Properties and Circular Convolution
Signals & Systems (CNET - 221) Chapter-5 Fourier Transform
Chapter 8 The Discrete Fourier Transform
Chapter 8 The Discrete Fourier Transform
Signals and Systems Lecture 15
Fast Fourier Transform (FFT) Algorithms
CE Digital Signal Processing Fall Discrete Fourier Transform (DFT)
Presentation transcript:

Sampling the Fourier Transform Consider an aperiodic sequence with a Fourier transform Assume that a sequence is obtained by sampling the DTFT Since the DTFT is periodic resulting sequence is also periodic We can also write it in terms of the z-transform The sampling points are shown in figure could be the DFS of a sequence Write the corresponding sequence الفريق الأكاديمي لجنة الهندسة الكهربائية

Sampling the Fourier Transform Cont’d The only assumption made on the sequence is that DTFT exist Combine equation to get Term in the parenthesis is So we get الفريق الأكاديمي لجنة الهندسة الكهربائية

Sampling the Fourier Transform Cont’d الفريق الأكاديمي لجنة الهندسة الكهربائية

Sampling the Fourier Transform Cont’d Samples of the DTFT of an aperiodic sequence can be thought of as DFS coefficients of a periodic sequence obtained through summing periodic replicas of original sequence If the original sequence is of finite length and we take sufficient number of samples of its DTFT the original sequence can be recovered by It is not necessary to know the DTFT at all frequencies To recover the discrete-time sequence in time domain Discrete Fourier Transform Representing a finite length sequence by samples of DTFT الفريق الأكاديمي لجنة الهندسة الكهربائية

The Discrete Fourier Transform Consider a finite length sequence x[n] of length N For given length-N sequence associate a periodic sequence The DFS coefficients of the periodic sequence are samples of the DTFT of x[n] Since x[n] is of length N there is no overlap between terms of x[n-rN] and we can write the periodic sequence as To maintain duality between time and frequency We choose one period of as the Fourier transform of x[n] الفريق الأكاديمي لجنة الهندسة الكهربائية

The Discrete Fourier Transform Cont’d The DFS pair The equations involve only on period so we can write The Discrete Fourier Transform The DFT pair can also be written as الفريق الأكاديمي لجنة الهندسة الكهربائية

لجنة الهندسة الكهربائية Example The DFT of a rectangular pulse x[n] is of length 5 We can consider x[n] of any length greater than 5 Let’s pick N=5 Calculate the DFS of the periodic form of x[n] الفريق الأكاديمي لجنة الهندسة الكهربائية

لجنة الهندسة الكهربائية Example Cont’d If we consider x[n] of length 10 We get a different set of DFT coefficients Still samples of the DTFT but in different places الفريق الأكاديمي لجنة الهندسة الكهربائية

لجنة الهندسة الكهربائية Properties of DFT Linearity Duality Circular Shift of a Sequence الفريق الأكاديمي لجنة الهندسة الكهربائية

لجنة الهندسة الكهربائية Example: Duality الفريق الأكاديمي لجنة الهندسة الكهربائية

لجنة الهندسة الكهربائية Symmetry Properties الفريق الأكاديمي لجنة الهندسة الكهربائية

لجنة الهندسة الكهربائية Circular Convolution Circular convolution of of two finite length sequences الفريق الأكاديمي لجنة الهندسة الكهربائية

لجنة الهندسة الكهربائية Example Circular convolution of two rectangular pulses L=N=6 DFT of each sequence Multiplication of DFTs And the inverse DFT الفريق الأكاديمي لجنة الهندسة الكهربائية

لجنة الهندسة الكهربائية Example We can augment zeros to each sequence L=2N=12 The DFT of each sequence Multiplication of DFTs الفريق الأكاديمي لجنة الهندسة الكهربائية