Lesson 1: Measures of Center Mean and Median

Slides:



Advertisements
Similar presentations
Introduction Measures of center and variability can be used to describe a data set. The mean and median are two measures of center. The mean is the average.
Advertisements

4.1.1: Summarizing Numerical Data Sets
Warm Up Simplify each expression. – 53
CONFIDENTIAL 1 Grade 8 Algebra1 Data Distributions.
3. Use the data below to make a stem-and-leaf plot.
0-12 Mean, Median, Mode, Range and Quartiles Objective: Calculate the measures of central tendency of a set of data.
Objectives Describe the central tendency of a data set.
Objectives Create and interpret box-and-whisker plots.
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
6-9 Data Distributions Objective Create and interpret box-and-whisker plots.
Objectives Vocabulary Describe the central tendency of a data set.
Warm-Up Define mean, median, mode, and range in your own words. Be ready to discuss.
Quantitative data. mean median mode range  average add all of the numbers and divide by the number of numbers you have  the middle number when the numbers.
Summary Statistics and Mean Absolute Deviation MM1D3a. Compare summary statistics (mean, median, quartiles, and interquartile range) from one sample data.
BPS - 5th Ed. Chapter 21 Describing Distributions with Numbers.
Warm Up Simplify each expression
Using Measures of Position (rather than value) to Describe Spread? 1.
Box Plots March 20, th grade. What is a box plot? Box plots are used to represent data that is measured and divided into four equal parts. These.
Holt McDougal Algebra Data Distributions Warm Up Identify the least and greatest value in each set Use the data below to make a stem-and-
Unit 4 Describing Data Standards: S.ID.1 Represent data on the real number line (dot plots, histograms, and box plots) S.ID.2 Use statistics appropriate.
Chapter 1 Lesson 4 Quartiles, Percentiles, and Box Plots.
Measures of Central Tendency, Dispersion, IQR and Standard Deviation How do we describe data using statistical measures? M2 Unit 4: Day 1.
Probability & Statistics Box Plots. Describing Distributions Numerically Five Number Summary and Box Plots (Box & Whisker Plots )
Holt McDougal Algebra 1 Data Distributions Holt Algebra 1 Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz Holt McDougal.
10-3 Data Distributions Warm Up Lesson Presentation Lesson Quiz
Please copy your homework into your assignment book
Notes 13.2 Measures of Center & Spread
Box and Whisker Plots and the 5 number summary
Box and Whisker Plots and the 5 number summary
Introduction To compare data sets, use the same types of statistics that you use to represent or describe data sets. These statistics include measures.
Unit Three Central Tendency.
Measures of Central Tendency & Center of Spread
10-3 Data Distributions Warm Up Lesson Presentation Lesson Quiz
Box-and-Whisker Plots
10-3 Data Distributions Warm Up Lesson Presentation Lesson Quiz
Measures of Central Tendency & Center of Spread
Calculation $1 $8 $12 $10 $45 $9 $1 $7 $6
SEE SOMETHING, SAY SOMETHING
SEE SOMETHING, SAY SOMETHING
Measures of Variation.
Warm-up 8/25/14 Compare Data A to Data B using the five number summary, measure of center and measure of spread. A) 18, 33, 18, 87, 12, 23, 93, 34, 71,
Vocabulary box-and-whisker plot lower quartile upper quartile
SEE SOMETHING, SAY SOMETHING
SEE SOMETHING, SAY SOMETHING
The absolute value of each deviation.
11.2 box and whisker plots.
Section 9.1: Measures of Center and Spread
Algebra I Unit 1.
Interquartile Range as a Measure of Variation
Lesson 2 Range and Quartiles.
Describe the spread of the data:
The width of the box shows the IQR,
Basic Practice of Statistics - 3rd Edition
Measures of Central Tendency
Displaying Numerical Data Using Box Plots
SEE SOMETHING, SAY SOMETHING
EOC Review Question of the Day.
Measures of Central Tendency and Variation 8-1
Statistics and Data (Algebraic)
CCM1A – Dr. Fowler Unit 2 – Lesson 3 Box-and-Whisker Plots
10-3 Data Distributions Warm Up Lesson Presentation Lesson Quiz
Basic Practice of Statistics - 3rd Edition
Please copy your homework into your assignment book
Box-and-Whisker Plots
5 Number Summaries.
Warm-Up Define mean, median, mode, and range in your own words. Be ready to discuss.
Core Focus on Linear Equations
Unit 2: Descriptive Statistics
“Day E” April 22, :51 - 8:51 Math 8:53 - 9:53 Science
Box Plot Lesson 11-4.
Presentation transcript:

Lesson 1: Measures of Center Mean and Median Name:_______________________ Period:____ Activate Prior Knowledge Find the mean of the given data set. The numbers of members in five karate classes are 13, 12, 10, 16, and 19. Find the mean value: 2. There are 28, 30, 29, 26, 31, and 30 students in a school’s four Algebra 1 Classes. Find the mean value: Remember the Concept Remember the Concept Make the Connection Students, you already know how to find the mean and median. Today, we will learn how to use Mean and Median to Measures the Center. Two commonly used measures of _______ or a set of numerical data are the _____ and _______.Measures of center represent a central or typical value of a data set. Pair-Share: Partner-A: How do you find the mean and median? Partner-B: When do you use: Mean as center and Median as center? CFU: Pair-Share CONCEPT DEVELOPMENT

Find the mean. Find the mean. Find the median. Find the median. The number of text messages that Isaac received each day for a week is shown. 47, 49, 54, 50, 48, 47, 55 2. The amount of money Elise earned in tips per day for 6 days is listed below. $80, $74, $77, $71, $75, and $91.: Find the mean. Find the mean. Find the median. Find the median. Guided Practice Remember the Concept Remember the Concept

77 °F, 86 °F, 84 °F, 93 °F, and 90 °F. Find IQR Measures of spread are used to describe the consistency of data values. They show the distance between data values and their distance from the center of the data. Two commonly used measures of spread for a set of numerical data are the ______ and ______________. The _________ is the difference between the greatest and the least data values. _________ are values that divide a data set into four equal parts. The _________ ( 𝑸 𝟏 ) is the median of the lower half of the set, the _________ ( 𝑸 𝟐 ) is the median of the whole set, and the _________ ( 𝑸 𝟑 ) is the median of the upper half of the set. The _________ ___ (IQR) of a data set is the difference between the third and first quartiles. It represents the range of the middle half of the data. Steps to Find IQR Step 1: Put the numbers in order. Step 2: Find the median( 𝑸 𝟐 ). Step 3: Cut the data set into Lower Half and Upper Half. Step 4: Find Median of Lower Half ( 𝑸 𝟏 ). Step 5: Find Median of Upper Half ( 𝑸 𝟑 ). Step 6: IQR = 𝑸 𝟑 - 𝑸 𝟏 . CONCEPT DEVELOPMENT The April high temperatures for 5 years in Delhi are 77 °F, 86 °F, 84 °F, 93 °F, and 90 °F. Find IQR

Steps to Find IQR Step 1: Put the numbers in order. Step 2: Find the median( 𝑸 𝟐 ). Step 3: Cut the data set into Lower Half and Upper Half. Step 4: Find Median of Lower Half ( 𝑸 𝟏 ). Step 5: Find Median of Upper Half ( 𝑸 𝟑 ). Step 6: IQR = 𝑸 𝟑 - 𝑸 𝟏 .

What did you learn about using the mean, Median, & IQR. SUMMARY CLOSURE Word Bank Mean Median Quartile IQR Range Data Set Today, I learned how to _________________________________________________________________________________.