Unit 2. Day 4..

Slides:



Advertisements
Similar presentations
Adding and Subtracting Fractions with Like Denominators.
Advertisements

Add & Subtract Like Fractions
Lesson 3-5 Example Example 2 1.Write the prime factorization of each denominator × 22 × ×
Adding/Subtracting Fractions (like denominators) Adding/Subtracting Fractions (unlike denominators) Adding/Subtracting Decimals Multiplying/Dividing Fractions.
11-7 Rational Expressions with Unlike Denominators Algebra 1 Glencoe McGraw-HillLinda Stamper.
Lesson #13 Adding & Subtracting Rational Expressions.
Section 8.8.  In this lesson you will learn to add, subtract, multiply, and divide rational expressions. In the previous lesson you combined a rational.
Goal: Add and subtract rational expressions. Eligible Content: A ADDING AND SUBTRACTING RATIONAL EXPRESSIONS.
12-6 Rational Expressions with Like Denominators Objective: Students will be able to add and subtract rational expressions with like denominators.
Math /7.4 – Rational Expressions: LCD, Adding, and Subtracting 1.
4-5 Add or Subtract Mixed Numbers. Add Mixed Numbers To add mixed numbers: o First add the fractions o You may need to rename the fractions so that they.
Rational Expressions – Sum & Difference 1 When fractions already have a common denominator, keep the denominator the same and add / subtract your numerators.
Adding & Subtracting Whole Number and Fractions
Measurement Multiplying and Dividing Fractions.  We can add and subtract fractions with the same (common) denominator easily. Adding and Subtracting.
Add / Subtract Rational Numbers: Unlike Fractions.
Add and subtract Rationals with Unlike denominators.
Lesson 8-2: Adding and Subtracting Rational Expressions.
3-5 Adding and Subtracting Like Fractions. Add Like Fractions Like fractions are fractions with the same denominator. Key Concept: Adding Like Fractions.
Adding & Subtracting Fractions Lesson 9. Math Vocabulary Fraction: A math term that shows part of a whole or part of a set. Numerator: TOP number of a.
Notes Over 8 – 5 Add. + Add the whole numbers. Add the fractions and reduce if needed.
Lesson 3-6 Example Example 2 1.Write the prime factorization of each denominator. 10=2 5 6=2 3.
3-6 Adding and Subtracting Unlike Fractions. Add Unlike Fractions Unlike fractions are fractions with different denominators. Key Concept: Adding Unlike.
Warm-up Divide. 1. (x 6 – x 5 + x 4 ) ÷ x 2 2. (9c 4 + 6c 3 – c 2 ) ÷ 3c 2 3. (x 2 – 5x + 6) ÷ (x – 2) 4. (2x 2 + 3x – 11) ÷ (x – 3)
Adding and Subtracting Rational Expressions with Different Denominators Find the LCD of two or more rational expressions. 2.Given two rational expressions,
COURSE 2 LESSON 4-2 Find Keep the denominator the same = Add the numerators. The answer is close to the estimate
11.5 Adding and Subtracting Rational Expressions
Adding and Subtracting Rational Expressions
Rational Numbers Adding Like Fractions
Adding and Subtracting Fractions
Fractions: Adding and Subtracting Like Denominators
Unit 2. Day 4..
In this lesson you will learn how to add and subtract mixed numbers by grouping the problem into wholes and fractions and by re-naming the sum or difference.
Adding & Subtracting Rational Expressions
12.3 – Rational Expressions – Adding and Subtracting
Unit 2. Day 10..
Unit 2. Day 1..
Unit 1. Day 8..
Unit 1. Day 2..
Unit 1. Day 5..
Unit 1. Day 4..
Unit 1. Day 7..
Unit 3. Day 2..
Adding and subtracting rational numbers
Unit 2. Day 6..
Unit 2. Day 5..
Unit 3. Day 1..
Unit 2. Day 8..
Unit 2. Day 4..
Unit 3. Day 22..
Unit 2. Day 5..
Unit 2. Day 11..
Fractions: Adding and Subtracting Like Denominators
Adding and Subtracting Rational Numbers
Unit 2. Day 7..
Add and subtract Rationals with Unlike denominators
Unit 2. Day 14..
Unit 1. Day 9..
Unit 2. Day 14..
Unit 2. Day 10..
Unit 2. Day 13..
Unit 2. Day 8..
Unit 2. Day 12..
Adding and Subtracting Unlike Fractions
Fractions With Like Denominators
Adding & subtracting Fractions With Common denominator.
Adding and subtracting fractions
Adding and Subtracting Rational Expressions
Add & Subtract Fractions
Presentation transcript:

Unit 2. Day 4.

Please get out paper for today’s lesson Name Date Period -------------------------------------------------------- Topic: Adding & Subtracting Rational Numbers 7.NS.A.1 Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers (fractions)

4th, 5th, 6th Grade

Example -: Add or subtract. Write in simplest form. 3 8 + 1 8 4 8 1 2 3+1 2∙2 = = = = 8 8 2∙2∙2 4 8 2 2 2 4 2 2

7th Grade

Example A: Add or subtract. Write in simplest form. 23 24 − 39 24 −16 24 23−39 − 2 3 − 2∙2∙2∙2 = = = = 24 24 2∙2∙2∙3 24 16 4 6 4 4 2 2 3 2 2 2 2 2

− 11 16 − 1 16 Add or subtract. Write in simplest form. Example B*: − 17 12 − −7 12 Example C*: 5 1 6 −6 5 6 31 6 41 6 Example D*: −

Example B*: Add or subtract. Write in simplest form. − 11 16 − 1 16 −12 16 −11−1 − 3 4 −2∙2∙3 = = = = 16 16 2∙2∙2∙2 12 16 4 4 3 4 2 2 2 2 2 2

Example C*: Add or subtract. Write in simplest form. + − 17 12 − − 7 12 − 17 12 − −7 12 −10 12 − 5 6 −17+7 −2∙5 = = = = 12 12 2∙2∙3 12 10 3 4 2 5 2 2

10 6 3 2 5 2 Example D*: Add or subtract. Write in simplest form. 5 1 6 −6 5 6 31 6 41 6 − 31−41 −10 6 −2∙5 − 5 3 = = = = 2∙3 6 6 −1 2 3 = 10 6 2 5 2 3

Uncommon Denominators

Example E: 5 14 − 5 8 20 56 35 56 −15 56 −1∙3∙5 − 15 56 = − = = = 14 8 2∙2∙2∙7 5 14 20 56 5 8 35 56   : 14 , 28 , 42 , 56 , 70 , 84 , 98 , 112 , 126 , 140 , 154 , : 8 , 16 , 24 , 32 , 40 , 48 , 56 , 64 , 72 ,

− 5 8 + 5 24 Example F: − 6 8 + − 3 9 Example G:

Example F*: − 5 8 + 5 24 − 15 24 + 5 24 −10 24 −1∙2∙5 −5 12 = = = = 8 24 2∙2∙2∙3 − 5 8 − 24 15 5 24 5 24   : 8 , 16 , 24 , 32 , 40 , 48 , 56 , 64 , 72 , 80 , 88 , 96 , 104 : 24 , 48 , 72 , 96 , 120 , 144 , 168 , 192 , 216 , 240

: : : : Example G*: − 6 8 − 72 54  − 6 8 + − 3 9 − 13 12 −13 12 = = 8 − 72 54  − 6 8 + − 3 9 + − 54 72 − 24 72 −78 −1∙2∙3∙13 − 13 12 −13 12 = = 72 = = 8 9 2∙2∙2∙3∙3 − 3 9 − 72 24  −1 1 12 : 8 , 16 , 24 , 32 , 40 , 48 , 56 , 64 , 72 , 80 : 9 , 18 , 27 , 36 , 45 , 54 , 63 , 72 + − 1 3 + − 3 4 − 12 9 − 3 4 − 6 8 − 3 9 − 9 12 − 13 12 −13 12 − 4 12 = =  4 3 − 1 3 − 12 4  −1 1 12 : 4 , 8 , 12 , 16 , 20 , 24 : 3 , 6 , 9 , 12

8 16 − 4 32 5 15 − 12 20 − 8 9 − − 5 6 Example H*: Example I*: Example J*:

Example H: + − 8 9 − − 5 6 − 16 18 + 15 18 − 1 18 = = 9 6 5 6 15 18 − 8 9 − 18 16   : 9 , 18 , 27 , 36 , 45 , 54 , 63 , 72 , 81 , 90 , 99 , 108 , 117 : 6 , 12 , 18 , 24 , 30 , 36 , 42 , 48 , 54 , 60 , 66 , 72

Example I*: 8 16 16 32  8 16 − 4 32 16 32 − 4 32 12 32 2∙2∙3 3 8 = = = = 16 32 2∙2∙2∙2∙2 4 32 4 32  : 16 , 32 , 48 , 64 , 80 , 96 : 32 , 64 , 96 , 128 1 2 − 1 8 1 2 4 8 4 8 − 1 8 3 8 = =  2 8 : 1 8 1 8 2 , 4 , 6 , 8 , 10 , 12  : 8 , 16 , 24 , 32

Example J*: 5 15 20 60  5 15 − 12 20 20 60 − 36 60 −16 −4 15 −1∙2∙2∙2∙2 = = 60 = = 15 20 2∙2∙3∙5 12 20 36 60  : 15 , 30 , 45 , 60 , 75 , 90 : 20 , 40 , 60 , 80 5 15 1 3 9 15 3 5 1 3 5 15 5 15 − 9 15 −4 − = =  15 3 5 3 5 9 15  : 3 , 6 , 9 , 12 , 15 , 18 : 5 , 10 , 15 , 20