Β1 integrin−mediated signals are required for platelet granule secretion and hemostasis in mouse by Tobias Petzold, Raphael Ruppert, Dharmendra Pandey,

Slides:



Advertisements
Similar presentations
Arterioscler Thromb Vasc Biol
Advertisements

by Miguel Vicente-Manzanares, Aranzazu Cruz-Adalia, Noa B
Roles of RabGEF1/Rabex-5 domains in regulating FcϵRI surface expression and FcϵRI-dependent responses in mast cells by Janet Kalesnikoff, Eon J. Rios,
Reduced thrombus stability in mice lacking the α2A-adrenergic receptor
Activation of αIIbβ3 is a sufficient but also an imperative prerequisite for activation of α2β1 on platelets by Gerlinde R. Van de Walle, Anne Schoolmeester,
by Matt W. Goschnick, Lai-Man Lau, Janet L. Wee, Yong S. Liu, P
Occlusive thrombi arise in mammals but not birds in response to arterial injury: evolutionary insight into human cardiovascular disease by Alec A. Schmaier,
Interaction of kindlin-2 with integrin β3 promotes outside-in signaling responses by the αVβ3 vitronectin receptor by Zhongji Liao, Hisashi Kato, Manjula.
Tissue-Specific Expression of Functional Platelet Factor XI Is Independent of Plasma Factor XI Expression by Chang-jun Hu, Frank A. Baglia, David C.B.
Defective release of α granule and lysosome contents from platelets in mouse Hermansky-Pudlak syndrome models by Ronghua Meng, Jie Wu, Dawn C. Harper,
PRT , a novel Syk inhibitor, prevents heparin-induced thrombocytopenia and thrombosis in a transgenic mouse model by Michael P. Reilly, Uma Sinha,
Vessel wall BAMBI contributes to hemostasis and thrombus stability
S6K1 and mTOR regulate Rac1-driven platelet activation and aggregation
by Kesheng Dai, Richard Bodnar, Michael C. Berndt, and Xiaoping Du
by Hong Yin, Aleksandra Stojanovic, Nissim Hay, and Xiaoping Du
by Simon Stritt, Inga Birkholz, Sarah Beck, Simona Sorrentino, K
by Fawzi Aoudjit, and Kristiina Vuori
ADAP interactions with talin and kindlin promote platelet integrin αIIbβ3 activation and stable fibrinogen binding by Ana Kasirer-Friede, Jian Kang, Bryan.
Agonist-induced aggregation of Chinese hamster ovary cells coexpressing the human receptors for fibrinogen (integrin αIIbβ3) and the platelet-activating.
by Zhengyan Wang, Tina M. Leisner, and Leslie V. Parise
by Veerendra Munugalavadla, Jovencio Borneo, David A
Α-Chain phosphorylation of the human leukocyte CD11b/CD18 (Mac-1) integrin is pivotal for integrin activation to bind ICAMs and leukocyte extravasation.
Angiotensin 1-7 and Mas decrease thrombosis in Bdkrb2−/− mice by increasing NO and prostacyclin to reduce platelet spreading and glycoprotein VI activation.
by Jun Chung, Xue-Qing Wang, Frederik P. Lindberg, and William A
Negative regulation of platelet function by a secreted cell repulsive protein, semaphorin 3A by Hirokazu Kashiwagi, Masamichi Shiraga, Hisashi Kato, Tsuyoshi.
Alterations in platelet secretion differentially affect thrombosis and hemostasis by Smita Joshi, Meenakshi Banerjee, Jinchao Zhang, Akhil Kesaraju, Irina.
Identification of FcγRIIa as the ITAM-bearing receptor mediating αIIbβ3 outside-in integrin signaling in human platelets by Brian Boylan, Cunji Gao, Vipul.
A role for the thiol isomerase protein ERP5 in platelet function
A potential role for α-actinin in inside-out αIIbβ3 signaling
Rap1-GTP–interacting adaptor molecule (RIAM) is dispensable for platelet integrin activation and function in mice by Simon Stritt, Karen Wolf, Viola Lorenz,
by Bruno Bernardi, Gianni F. Guidetti, Francesca Campus, Jill R
Impaired activation of platelets lacking protein kinase C-θ isoform
Signaling through ZAP-70 is required for CXCL12-mediated T-cell transendothelial migration by Michel Ticchioni, Céline Charvet, Nelly Noraz, Laurence Lamy,
C1qTNF–related protein-1 (CTRP-1): a vascular wall protein that inhibits collagen-induced platelet aggregation by blocking VWF binding to collagen by Gerald.
Phosphorylation of CLEC-2 is dependent on lipid rafts, actin polymerization, secondary mediators, and Rac by Alice Y. Pollitt, Beata Grygielska, Bertrand.
IRAG mediates NO/cGMP-dependent inhibition of platelet aggregation and thrombus formation by Melanie Antl, Marie-Luise von Brühl, Christina Eiglsperger,
Role of Kindlin-2 in Fibroblast Functions: Implications for Wound Healing  Yinghong He, Philipp Esser, Vivien Schacht, Leena Bruckner-Tuderman, Cristina.
Interaction of kindlin-3 and β2-integrins differentially regulates neutrophil recruitment and NET release in mice by Zhen Xu, Jiayi Cai, Juan Gao, Gilbert.
LPS induces CD40 gene expression through the activation of NF-κB and STAT-1α in macrophages and microglia by Hongwei Qin, Cynthia A. Wilson, Sun Jung Lee,
The cytokine midkine supports neutrophil trafficking during acute inflammation by promoting adhesion via β2 integrins (CD11/CD18)‏ by Ludwig T. Weckbach,
Diverging signaling events control the pathway of GPVI down-regulation in vivo by Tamer Rabie, David Varga-Szabo, Markus Bender, Rastislav Pozgaj, Francois.
RGS10 shapes the hemostatic response to injury through its differential effects on intracellular signaling by platelet agonists by Peisong Ma, Shuchi Gupta,
Volume 124, Issue 5, Pages (May 2003)
Dasatinib enhances megakaryocyte differentiation but inhibits platelet formation by Alexandra Mazharian, Cedric Ghevaert, Lin Zhang, Steffen Massberg,
Histamine Contributes to Tissue Remodeling via Periostin Expression
In-depth PtdIns(3,4,5)P3 signalosome analysis identifies DAPP1 as a negative regulator of GPVI-driven platelet function by Tom N. Durrant, James L. Hutchinson,
by Hairui Su, Chiao-Wang Sun, Szu-Mam Liu, Xin He, Hao Hu, Kevin M
Dichloroacetate, an inhibitor of pyruvate dehydrogenase kinases, inhibits platelet aggregation and arterial thrombosis by Manasa K. Nayak, Nirav Dhanesha,
by Reuben Kapur, Ryan Cooper, Lei Zhang, and David A. Williams
Volume 112, Issue 1, Pages (January 2003)
Direct Signaling between Platelets and Cancer Cells Induces an Epithelial- Mesenchymal-Like Transition and Promotes Metastasis  Myriam Labelle, Shahinoor.
Inter-α inhibitor proteins maintain neutrophils in a resting state by regulating shape and reducing ROS production by Soe Soe Htwe, Hidenori Wake, Keyue.
Platelet-specific deletion of SNAP23 ablates granule secretion, substantially inhibiting arterial and venous thrombosis in mice by Christopher M. Williams,
Volume 20, Issue 4, Pages (July 2017)
by Silvia Mele, Stephen Devereux, Andrea G
Rap1 binding to the talin 1 F0 domain makes a minimal contribution to murine platelet GPIIb-IIIa activation by Frederic Lagarrigue, Alexandre R. Gingras,
Integrin α3β1-Dependent Activation of FAK/Src Regulates Rac1-Mediated Keratinocyte Polarization on Laminin-5  David P. Choma, Vincenzo Milano, Kevin M.
Platelet MEKK3 regulates arterial thrombosis and myocardial infarct expansion in mice by Xuemei Fan, Conghui Wang, Panlai Shi, Wen Gao, Jianmin Gu, Yan.
Elucidating the effects of disease-causing mutations on STAT3 function in autosomal- dominant hyper-IgE syndrome  Simon J. Pelham, MSc, Helen C. Lenthall,
Severe platelet dysfunction in NHL patients receiving ibrutinib is absent in patients receiving acalabrutinib by Alexander P. Bye, Amanda J. Unsworth,
T exosomes bind MAdCAM-1 via RA-increased integrin α4β7.
The endogenous antimicrobial cathelicidin LL37 induces platelet activation and augments thrombus formation by Maryam F. Salamah, Divyashree Ravishankar,
ELMO1 deficiency enhances platelet function
by Tadayuki Yago, Nan Zhang, Liang Zhao, Charles S
Sara K. Donnelly, Ina Weisswange, Markus Zettl, Michael Way 
Secretion is ablated in the absence of SNAP23.
Actin assembly in response to thrombin.
Complement C5 but not C3 is expendable for tissue factor activation by cofactor-independent antiphospholipid antibodies by Nadine Müller-Calleja, Svenja.
John M. Lamar, Vandana Iyer, C. Michael DiPersio 
by Alyssa J. Moroi, Nicole M. Zwifelhofer, Matthew J. Riese, Debra K
Presentation transcript:

β1 integrin−mediated signals are required for platelet granule secretion and hemostasis in mouse by Tobias Petzold, Raphael Ruppert, Dharmendra Pandey, Verena Barocke, Hannelore Meyer, Michael Lorenz, Lin Zhang, Wolfgang Siess, Steffen Massberg, and Markus Moser Blood Volume 122(15):2723-2731 October 10, 2013 ©2013 by American Society of Hematology

Characterization of platelets from β1 integrin mouse mutants. Characterization of platelets from β1 integrin mouse mutants. Platelet β1 integrin surface expression of wild-type (WT; β1+/+), HT (β1+/−), KO (β1−/−), TTAA (β1TTAA), and Hpm (β1Hpm) β1 integrin mice were analyzed by flow cytometry. (B) Geometric mean values of β1 integrin expression shown in panel A were corrected for isotype control and expressed as % of WT β1-integrin surface levels (n = 6 per group). (C) Platelet lysates were subjected to immunoblotting for β1-integrin, talin-1, kindlin-3, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). (D) Surface expression of β3 integrin, GPVI, and GPIX on platelets of indicated mouse strains. (E) Platelet β1 integrin activation was determined with the conformation-specific 9EG7 antibody via the use of flow cytometry upon stimulation with 50 ng/mL CVX, 0.1 U/mL thrombin, or 5 mM U46619. Acquired mean fluorescence intensity values were normalized to total β1 integrin expression levels and are shown as arbitrary unit (n = 3 for TTAA and Hpm, n = 4 for all other groups; bars represent mean values ± SEM; significance levels are indicated; *P < .05; **P < .01; n.s., not significant). (F) Active β3 integrins were determined with JON/A antibody after platelet stimulation with indicated stimuli. No significant difference between all tested groups was determined (n = 5 for HT and WT, n = 4 for all other groups; bars represent geometric mean values ± SEM). Tobias Petzold et al. Blood 2013;122:2723-2731 ©2013 by American Society of Hematology

β1 integrin−mediated spreading and outside-in signaling is independent of kindlin-integrin interaction. β1 integrin−mediated spreading and outside-in signaling is independent of kindlin-integrin interaction. (A) Spreading of thrombin-stimulated platelets on soluble collagen in the absence or presence of 0.75 mM Mn2+ and on fibrinogen. Representative pictures are shown 45 minutes after platelet seeding (scale bar represents 5 μm). (B) Spreading area of mutant platelets on soluble collagen is shown relative to wild-type (WT) platelets at 45 minutes (bars represent mean values ± SEM; significance level are indicated; *P < .05; **P < .01). (C) Integrin outside-in signaling was evaluated by FAK autophosphorylation at Tyr379. Washed platelets from wild-type (WT), β1 knockout (KO), and TTAA mice as well as from kindlin-3−deficient mice (K3(−/−)) were stimulated with 5 μg/mL fibrillar collagen and seeded on soluble collagen-coated surfaces in the absence or presence of Mn2+. To analyze basal FAK phosphorylation, unstimulated platelets were seeded on BSA. Cells were lysed after 30 minutes and subjected to immunoblotting for FAK Y397 phosphorylation and total FAK. Tobias Petzold et al. Blood 2013;122:2723-2731 ©2013 by American Society of Hematology

Reduced platelet adhesion and aggregate formation onto injured vessel walls of β1-null, β1TTAA, and β1hpm mice, whereas tail bleeding times of β1hpm mice are normal. Reduced platelet adhesion and aggregate formation onto injured vessel walls of β1-null, β1TTAA, and β1hpmmice, whereas tail bleeding times of β1hpmmice are normal. (A) Number of adherent fluorescently labeled platelets to the injured vessel wall was quantified after 5, 10, 15, and 60 minutes. Values are expressed as percentage of adherent wild-type (WT) platelets (n/mm2) at 5 minutes (WT, n = 9; HT, n = 6; knockout [KO], n = 6; TTAA, n = 4; Hpm, n = 8; bars represent mean values ± SEM in percent, significance level are indicated; *P < .05; **P < .01 by one-way analysis of variance followed by a Tukey multiple comparison test). (B) Tail-bleeding times of chimeric mice carrying the bone marrow of the indicated genotype (WT, n = 19; fl/fl, n = 6; HT, n = 10; KO, n = 9; TTAA, n = 15; TTAA/fl, n = 6; Hpm, n = 13; Hpm/fl, n = 6; Kindlin-3−/−, n = 4; cross line represents mean bleeding time and bars represent SEM, significance level are indicated; **P < .01). Tobias Petzold et al. Blood 2013;122:2723-2731 ©2013 by American Society of Hematology

Collagen-induced platelet aggregation and granule secretion requires β1 integrins. Collagen-induced platelet aggregation and granule secretion requires β1 integrins. (A) Washed platelets were stimulated with 5 μg/mL fibrillar collagen (black curves) or 50 ng/mL CVX (gray curves) and aggregation was recorded for 600 seconds. (B) Aggregation of β1-null (KO) and β1TTAA (TTAA) platelets in the presence of 100 μg/mL fibrinogen (gray curves) or 0.75 mM Mn2+ (black curves). (C) ATP release from platelet dense granules after stimulation of platelets with collagen. ATP was measured by luminescence after addition of luciferase luciferin reagent using the Lumi-aggregometer (Chronolog, Havertown, PA). Platelets were stimulated with either 5 μg/mL fibrillar collagen or 50 ng/mL CVX for 10 minutes. The relative luminescence after 8 minutes (ratio of collagen to CVX stimulated cells) is shown (bars represent mean values ± SEM of n = 3 independent experiments). (D) Serotonin release after stimulation with collagen. Platelets were stimulated with either 5 μg/mL fibrillar collagen or 50 ng/mL CVX for 8 minutes. The relative serotonin level (ratio of collagen to CVX stimulation) is shown (bars represent mean values ± SEM of n ≥ 3 independent experiments). (E) Quantification of the cellular fibrinogen content in resting platelets or 8 minutes after stimulation with either fibrillar collagen (5 μg/mL) or CVX (50 ng/mL; bars represent mean values ± SEM; significance levels are indicated; *P < .05; wild-type (WT), n = 3; knockout (KO), n = 3; TTAA, n = 3; hypomorphic (Hpm), n = 3; representative blots are shown in supplemental Figure 4B). (F) Platelet content of the α-granule cargo proteins vWF and thrombospondin-1 (TSP-1) in wild-type (WT) and β1-null (KO) platelets upon collagen and stimulation with CVX. (G) Ratio of PF-4 release from platelets stimulated with either 5 μg/mL fibrillar collagen or 50 ng/mL CVX for 8 minutes (bars represent mean values ± SEM of n ≥ 3 independent experiments). Tobias Petzold et al. Blood 2013;122:2723-2731 ©2013 by American Society of Hematology

Normal actin polymerization, Rac activation, and PAK phosphorylation in β1 hypomorphic platelets. Normal actin polymerization, Rac activation, and PAK phosphorylation in β1 hypomorphic platelets. (A) Platelets from wild-type (WT), β1-null (KO), and hypomorphic (Hpm) mice were stimulated with 5 µg/mL fibrillar collagen for 60 seconds in the presence of 0.5 mM RGDS peptide, and the relative F-actin content was measured by flow cytometry. Curves represent mean ± SEM increase in FITC phalloidin MFI (n = 3, significance level are indicated). (B) Same platelet populations were stimulated with 5 µg/mL fibrillar collagen for 30 and 60 seconds lysed and subjected to Rac-1 GTP pulldown experiments. Total Rac-1 loading is shown below. (C) Quantification of GTP-bound active Rac-1 pulldown experiments at 60 seconds (bars represent mean values ± SEM; significance level are indicated; *P < .05; **P < .01; wild-type (WT), n = 4; β1-null (KO), n = 3; hypomorphic (Hpm), n = 4). (D) Platelets from WT, KO, and Hpm mice were stimulated with 5 µg/mL fibrillar collagen for the indicated time points, lysed and subjected to immunoblotting for p-Thr432/402 PAK1/2 and p-Ser19 myosin light chain (pMLC). Total MLC is shown as loading control. Tobias Petzold et al. Blood 2013;122:2723-2731 ©2013 by American Society of Hematology