New York State Police TrueAllele® Validation

Slides:



Advertisements
Similar presentations
Overcoming DNA Stochastic Effects 2010 NEAFS & NEDIAI Meeting November, 2010 Manchester, VT Mark W Perlin, PhD, MD, PhD Cybergenetics, Pittsburgh, PA Cybergenetics.
Advertisements

Forensic DNA Inference ICFIS 2008 Lausanne, Switzerland Mark W Perlin, PhD, MD, PhD Joseph B Kadane, PhD Robin W Cotton, PhD Cybergenetics ©
DNA Mixture Interpretations and Statistics – To Include or Exclude Cybergenetics © Prescription for Criminal Justice Forensics ABA Criminal Justice.
New York State Police TrueAllele ® Casework Developmental Validation Cybergenetics © New York State DNA Subcommittee March, 2010.
Finding Truth in DNA Mixture Evidence Innocence Network Conference April, 2013 Charlotte, NC Mark W Perlin, PhD, MD, PhD Cybergenetics, Pittsburgh, PA.
How Inclusion Interpretation of DNA Mixture Evidence Reduces Identification Information American Academy of Forensic Sciences February, 2013 Washington,
Creating informative DNA libraries using computer reinterpretation of existing data Northeastern Association of Forensic Scientists November, 2011 Newport,
Preventing rape in the military through effective DNA computing Forensics Europe Expo Forensics Seminar Theatre April, 2014 London, UK Mark W Perlin, PhD,
TrueAllele ® Casework Validation on PowerPlex ® 21 Mixture Data Australian and New Zealand Forensic Science Society September, 2014 Adelaide, South Australia.
Revolutionising DNA analysis in major crime investigations The Investigator Conferences Green Park Conference Centre May, 2014 Aylesbury, Buckinghamshire.
Revolutionising DNA analysis in major crime investigations The Investigator Conferences Green Park Conference Centre May, 2014 Aylesbury, Buckinghamshire.
No DNA Left Behind: When "inconclusive" really means "informative" Schenectady County District Attorney’s Office January, 2014 Mark W Perlin, PhD, MD,
Revolutionising DNA analysis in major crime investigations The Investigator Conferences Green Park Conference Centre May, 2014 Aylesbury, Buckinghamshire.
TrueAllele ® Mixture Interpretation Cybergenetics © th Annual DNA Technology Educational Seminar Centre of Forensic Sciences and the Promega.
DNA Mixture Statistics Cybergenetics © Spring Institute Commonwealth's Attorney's Services Council Richmond, Virginia March, 2013 Mark W.
More informative DNA identification: Computer reinterpretation of existing data Ria David, PhD Cybergenetics, Pittsburgh, PA Cybergenetics ©
Scientific Validation of Mixture Interpretation Methods 17th International Symposium on Human Identification Sponsored by the Promega Corporation October,
Computer Interpretation of Uncertain DNA Evidence National Institute of Justice Computer v. Human June, 2011 Arlington, VA Mark W Perlin, PhD, MD, PhD.
Presented by: Jamie L. Belrose NYS DNA Sub-committee Meeting; New York, NY March 5, 2010 New York State Police Validation of TrueAllele: a Statistical.
Using Expert Systems (TrueAllele ® ) for Forensic STR DNA Analysis National Institute of Justice Grantees Meeting 2011 Using Expert Systems (TrueAllele.
How TrueAllele ® Works (Part 2) Degraded DNA and Allele Dropout Cybergenetics Webinar November, 2014 Mark W Perlin, PhD, MD, PhD Cybergenetics, Pittsburgh,
TrueAllele ® Genetic Calculator: Implementation in the NYSP Crime Laboratory NYS DNA Subcommittee May 19, 2010 Barry Duceman, Ph.D New York State Police.
Reanimating Zombie™ DNA Penn State Dickinson Law School September, 2012 State College, Pennsylvania Mark W Perlin, PhD, MD, PhD Cybergenetics, Pittsburgh,
Separating Familial Mixtures, One Genotype at a Time Northeastern Association of Forensic Scientists November, 2014 Hershey, PA Ria David, PhD, Martin.
Cybergenetics Webinar January, 2015 Mark W Perlin, PhD, MD, PhD Cybergenetics, Pittsburgh, PA Cybergenetics © How TrueAllele ® Works (Part 4)
Cracking the DNA mixture code – computer analysis of UK crime cases Forensics Europe Expo Forensic Innovation Conference April, 2014 London, UK Mark W.
Unleashing Forensic DNA through Computer Intelligence Forensics Europe Expo Forensic Innovation Conference April, 2013 London, UK Mark W Perlin, PhD, MD,
Rapid DNA Response: On the Wings of TrueAllele Mid-Atlantic Association of Forensic Scientists May, 2015 Cambridge, Maryland Martin Bowkley, Matthew Legler,
Getting Past First Bayes with DNA Mixtures American Academy of Forensic Sciences February, 2014 Seattle, WA Mark W Perlin, PhD, MD, PhD Cybergenetics,
Compute first, ask questions later: an efficient TrueAllele ® workflow Midwestern Association of Forensic Scientists October, 2014 St. Paul, MN Martin.
TrueAllele ® interpretation of Allegheny County DNA mixtures Cybergenetics © Continuing Legal Education Allegheny County Courthouse February,
Virginia TrueAllele ® Validation Study: Casework Comparison Presented at AAFS, February, 2013 Published in PLOS ONE, March, 2014 Mark W Perlin, PhD, MD,
TrueAllele ® Computing: All the DNA, all the time Continuing Professional Development Sydney, Australia March, 2014 Mark W Perlin, PhD, MD, PhD Cybergenetics,
DNA Mapping the Crime Scene: Do Computers Dream of Electric Peaks? 23rd International Symposium on Human Identification October, 2012 Nashville, TN Mark.
Mark W Perlin, PhD, MD, PhD Cybergenetics, Pittsburgh, PA Cybergenetics © Duquesne University October, 2015 Pittsburgh, PA What’s in a Match?
Open Access DNA Database Duquesne University March, 2013 Pittsburgh, PA Mark W Perlin, PhD, MD, PhD Cybergenetics, Pittsburgh, PA Cybergenetics ©
Objective DNA Mixture Information in the Courtroom: Relevance, Reliability & Acceptance NIST International Symposium on Forensic Science Error Management:
DNA Identification: Quantitative Data Modeling Cybergenetics © Mark W Perlin, PhD, MD, PhD Cybergenetics, Pittsburgh, PA TrueAllele ® Lectures.
DNA-led investigation through computer interpretation of evidence Pennsylvania State Police Training Seminar Hershey, PA April, 2014 Mark W Perlin, PhD,
Data summary – “alleles” Threshold Over threshold, peaks are labeled as allele events All-or-none allele peaks, each given equal status Allele Pair 8,
Four person DNA mixture
DNA: TrueAllele® Statistical Analysis, Probabilistic Genotyping
A Match Likelihood Ratio for DNA Comparison
Validating TrueAllele® genotyping on ten contributor DNA mixtures
Error in the likelihood ratio: false match probability
Explaining the Likelihood Ratio in DNA Mixture Interpretation
DNA identification pathway
On the threshold of injustice: manipulating DNA evidence
“Using Computer Technology to Overcome Bottlenecks in the Forensic DNA Testing Process and Improve Data Recovery from Complex Samples”
Virginia TrueAllele® Validation Study: Casework Comparison
Mark W Perlin, PhD, MD, PhD Cybergenetics, Pittsburgh, PA, USA
Suffolk County TrueAllele® Validation
American Academy of Forensic Sciences Criminalistics Section
Solving Crimes using MCMC to Analyze Previously Unusable DNA Evidence
Investigative DNA Databases that Preserve Identification Information
DNA Identification: Inclusion Genotype and LR
DNA Identification: Stochastic Effects
Mark W Perlin, PhD, MD, PhD Cybergenetics, Pittsburgh, PA, USA
DNA Identification: Biology and Information
Forensic match information: exact calculation and applications
severed carotid artery
DNA identification pathway
TrueAllele® computer technology
Probabilistic Genotyping to the Rescue for Pinkins and Glenn
Forensic validation, error and reporting: a unified approach
DNA Identification: Mixture Interpretation
Testifying about probabilistic genotyping results
David W. Bauer1, PhD Nasir Butt2, PhD Jeffrey Oblock2
Using probabilistic genotyping to distinguish family members
Reporting match error: casework, validation & language
Presentation transcript:

New York State Police TrueAllele® Validation New York State DNA Subcommittee Russell Gettig, PhD May, 2011 Cybergenetics © 2007-2011

Property Crime Study Materials • 25 property crime cases • 91 evidence items • nonsuspect reference comparison Match information results • human: 6 CMPs reported • computer: 33 LRs reported

Efficacy and Reproducibility

Sensitivity and Specificity Within-case sensitivity Between-case specificity

Evidence-to-evidence Within-case sensitivity Between-case specificity

Preserving Identification Information

Solving Unsolved Cases

Complex Case • 30 evidence items • 6 known references • genotype: 36 items • compare: 180 pairs

Genotype Report Probabilistic genotype: SWGDAM 3.2.2, ANSI/NIST 18.020

Match Report A joint log(LR) value of 21.92 is 8.32 sextillion

Conclusions TrueAllele interpretation of DNA evidence • information preserving • reproducible • sensitive • specific • solves unsolved cases • simplifies complex cases • easy to use • easy to report