Volume 97, Issue 5, Pages (September 2009)

Slides:



Advertisements
Similar presentations
Dynamic Molecular Structure of DPPC-DLPC-Cholesterol Ternary Lipid System by Spin- Label Electron Spin Resonance  Yun-Wei Chiang, Yuhei Shimoyama, Gerald.
Advertisements

Volume 84, Issue 1, Pages (January 2003)
Interaction of LL-37 with Model Membrane Systems of Different Complexity: Influence of the Lipid Matrix  E. Sevcsik, G. Pabst, W. Richter, S. Danner,
Anmin Tan, André Ziegler, Bernhard Steinbauer, Joachim Seelig 
Ewa K. Krasnowska, Enrico Gratton, Tiziana Parasassi 
Investigation of Domain Formation in Sphingomyelin/Cholesterol/POPC Mixtures by Fluorescence Resonance Energy Transfer and Monte Carlo Simulations  Monica.
Ismail M. Hafez, Steven Ansell, Pieter R. Cullis  Biophysical Journal 
Thomas G. Anderson, Harden M. McConnell  Biophysical Journal 
Volume 97, Issue 4, Pages (August 2009)
Volume 76, Issue 2, Pages (February 1999)
Chang-Chun Lee, Yen Sun, Huey W. Huang  Biophysical Journal 
Scott D. Shoemaker, T. Kyle Vanderlick  Biophysical Journal 
Insertion of Alzheimer’s Aβ40 Peptide into Lipid Monolayers
Mechanism of the Lamellar/Inverse Hexagonal Phase Transition Examined by High Resolution X-Ray Diffraction  Michael Rappolt, Andrea Hickel, Frank Bringezu,
Volume 93, Issue 10, Pages (November 2007)
Volume 112, Issue 7, Pages (April 2017)
Composition Fluctuations in Lipid Bilayers
Juan M. Vanegas, Maria F. Contreras, Roland Faller, Marjorie L. Longo 
Volume 103, Issue 3, Pages (August 2012)
Volume 91, Issue 5, Pages (September 2006)
Volume 103, Issue 12, Pages (December 2012)
Volume 104, Issue 1, Pages (January 2013)
Reversible Liposome Association Induced by LAH4: A Peptide with Potent Antimicrobial and Nucleic Acid Transfection Activities  Arnaud Marquette, Bernard.
Fusion Peptides Promote Formation of Bilayer Cubic Phases in Lipid Dispersions. An X- Ray Diffraction Study  Boris G. Tenchov, Robert C. MacDonald, Barry.
Terhi Maula, Md. Abdullah Al Sazzad, J. Peter Slotte 
Christa Trandum, Peter Westh, Kent Jørgensen, Ole G. Mouritsen 
Jamie M. Dettler, Robert Buscaglia, Vu H. Le, Edwin A. Lewis 
Volume 75, Issue 4, Pages (October 1998)
Near-Critical Fluctuations and Cytoskeleton-Assisted Phase Separation Lead to Subdiffusion in Cell Membranes  Jens Ehrig, Eugene P. Petrov, Petra Schwille 
Volume 96, Issue 6, Pages (March 2009)
Tracking Phospholipid Populations in Polymorphism by Sideband Analyses of 31P Magic Angle Spinning NMR  Liam Moran, Nathan Janes  Biophysical Journal 
Membrane Thickening by the Antimicrobial Peptide PGLa
Coarse-Grained Molecular Dynamics Simulations of Phase Transitions in Mixed Lipid Systems Containing LPA, DOPA, and DOPE Lipids  Eric R. May, Dmitry I.
Volume 114, Issue 2, Pages (January 2018)
Ivan V. Polozov, Klaus Gawrisch  Biophysical Journal 
Volume 83, Issue 6, Pages (December 2002)
Michael Katzer, William Stillwell  Biophysical Journal 
Yifan Ge, Jiayun Gao, Rainer Jordan, Christoph A. Naumann 
Volume 93, Issue 2, Pages (July 2007)
Volume 107, Issue 12, Pages (December 2014)
Direct Visualization of Lipid Domains in Human Skin Stratum Corneum's Lipid Membranes: Effect of pH and Temperature  I. Plasencia, L. Norlén, L.A. Bagatolli 
Volume 106, Issue 3, Pages (February 2014)
Giant Unilamellar Vesicles Electroformed from Native Membranes and Organic Lipid Mixtures under Physiological Conditions  L.-Ruth Montes, Alicia Alonso,
Volume 110, Issue 3, Pages (February 2016)
Volume 85, Issue 6, Pages (December 2003)
Volume 93, Issue 2, Pages (July 2007)
Molecular View of Hexagonal Phase Formation in Phospholipid Membranes
Abhishek Mandal, Patrick C.A. van der Wel  Biophysical Journal 
Volume 86, Issue 4, Pages (April 2004)
Translational Entropy and DNA Duplex Stability
Volume 96, Issue 8, Pages (April 2009)
K.J. Tielrooij, D. Paparo, L. Piatkowski, H.J. Bakker, M. Bonn 
Volume 94, Issue 11, Pages (June 2008)
Volume 80, Issue 3, Pages (March 2001)
Jesús Sot, Luis A. Bagatolli, Félix M. Goñi, Alicia Alonso 
K.A. Riske, L.Q. Amaral, H.-G. Döbereiner, M.T. Lamy 
Volume 80, Issue 5, Pages (May 2001)
Phospholipase D Activity Is Regulated by Product Segregation and the Structure Formation of Phosphatidic Acid within Model Membranes  Kerstin Wagner,
Arnoldus W.P. Vermeer, Willem Norde  Biophysical Journal 
Sergi Garcia-Manyes, Gerard Oncins, Fausto Sanz  Biophysical Journal 
Vesna Serrano, Wenge Liu, Stefan Franzen  Biophysical Journal 
Phase Equilibria in DOPC/DPPC-d62/Cholesterol Mixtures
Volume 83, Issue 6, Pages (December 2002)
Volume 112, Issue 7, Pages (April 2017)
Volume 114, Issue 1, Pages (January 2018)
Rumiana Koynova, Robert C. MacDonald  Biophysical Journal 
Deuterium NMR Study of the Effect of Ergosterol on POPE Membranes
Volume 93, Issue 9, Pages (November 2007)
Volume 80, Issue 3, Pages (March 2001)
Saroj Kumar, Andreas Barth  Biophysical Journal 
Presentation transcript:

Volume 97, Issue 5, Pages 1398-1407 (September 2009) Sphingosine-1-Phosphate as an Amphipathic Metabolite: Its Properties in Aqueous and Membrane Environments  Marcos García-Pacios, M. Isabel Collado, Jon V. Busto, Jesús Sot, Alicia Alonso, José-Luis R. Arrondo, Félix M. Goñi  Biophysical Journal  Volume 97, Issue 5, Pages 1398-1407 (September 2009) DOI: 10.1016/j.bpj.2009.07.001 Copyright © 2009 Biophysical Society Terms and Conditions

Figure 1 (A) CMC of S1P estimated by the surface-pressure method. S1P in PIPES buffer, pH 7.4 (see Materials and Methods), at 21°C. The CMC was measured as the point beyond which further increases in S1P concentration do not lead to increased surface pressures. Average values ± SE of the mean (n = 3). (B) Turbidity (absorbance at 400 nm) of S1P suspensions in PIPES buffer, pH 7.4, at 21°C as a function of S1P concentration. Average values ± SE of the mean (n = 4). Biophysical Journal 2009 97, 1398-1407DOI: (10.1016/j.bpj.2009.07.001) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 2 Confocal fluorescence microscopy of a 2.76 mM suspension of S1P. The lipid was doped with 0.2 mol % DiI. Bar = 10 μm. Biophysical Journal 2009 97, 1398-1407DOI: (10.1016/j.bpj.2009.07.001) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 3 DSC of S1P in buffer dispersion. Second heating scan. The S1P concentration was 10 mM. Biophysical Journal 2009 97, 1398-1407DOI: (10.1016/j.bpj.2009.07.001) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 4 Band positions (maximal frequencies) of the C-H stretching vibrations of S1P as a function of temperature. (A) Symmetric stretching. (B) Asymmetric stretching. (●) Heating run. (○) Cooling run. Biophysical Journal 2009 97, 1398-1407DOI: (10.1016/j.bpj.2009.07.001) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 5 Band positions (maximal frequencies) of S1P vibrational bands as a function of temperature. (A) P-O stretching. (B) C-H bending. (●) Heating run. (○) Cooling run. Biophysical Journal 2009 97, 1398-1407DOI: (10.1016/j.bpj.2009.07.001) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 6 Static light scattering of a 1 mM S1P dispersion in buffer, as a function of temperature. Biophysical Journal 2009 97, 1398-1407DOI: (10.1016/j.bpj.2009.07.001) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 7 Phase transitions of pure DEPE and DEPE:S1P mixtures as detected by DSC. (A) Gel-fluid transitions. (B) Lamellar-hexagonal transitions. Second heating scans. The figures at the right side of each thermogram correspond to the S1P contents, in mole percentages. Biophysical Journal 2009 97, 1398-1407DOI: (10.1016/j.bpj.2009.07.001) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 8 Thermodynamic parameters of the phase transitions of pure DEPE and DEPE:S1P mixtures. Data are derived from thermograms as shown in Fig. 6. (A–C) Gel-fluid transitions. (D–F) Lamellar-hexagonal transitions. (A and D) Midpoint transition temperatures. (B and E) Transition enthalpies. (C and F) Transition widths at midheight of the thermograms. Biophysical Journal 2009 97, 1398-1407DOI: (10.1016/j.bpj.2009.07.001) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 9 Temperature-composition diagram (“phase diagram”) for the DEPE:S1P system in excess water. Experimental data were derived from DSC data as shown in Fig. 7. Lβ, lamellar gel phase. Lα, lamellar fluid, or liquid crystalline phase. HII, inverted hexagonal phase. Regions of coexisting domains are marked “coexistence”. Biophysical Journal 2009 97, 1398-1407DOI: (10.1016/j.bpj.2009.07.001) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 10 31P-NMR spectra of DEPE:S1P mixtures in excess water, as a function of temperature. Temperatures are indicated at the right-hand side for each spectrum. Biophysical Journal 2009 97, 1398-1407DOI: (10.1016/j.bpj.2009.07.001) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 11 The gel-fluid transitions of pure d62-DPPC, pure S1P, and d62-DPPC:S1P mixtures as detected by IR spectroscopy. The maximal frequencies (band positions) of the corresponding bands are plotted as a function of temperature (data from the second heating scan). (A) C-D symmetric stretching vibrations of d62-DPPC. (B) CO stretching vibrations of d62-DPPC. (C) C-H symmetric stretching vibrations of S1P. (●) Pure d62-DPPC. (○) d62-DPPC:S1P mixture at a 1:1 mol ratio. (▴) Pure S1P. Biophysical Journal 2009 97, 1398-1407DOI: (10.1016/j.bpj.2009.07.001) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 12 C=0 stretching region of the deconvoluted d62 DPPC IR spectrum. Dotted line: Pure d62-DPPC. Continuous line: d62-DPPC:S1P mixture at a 1:1 mol ratio. (A) 25°C. (B) 50°C. Deconvolution parameters: bandwidth = 18, enhancement factor = 2. Biophysical Journal 2009 97, 1398-1407DOI: (10.1016/j.bpj.2009.07.001) Copyright © 2009 Biophysical Society Terms and Conditions