A few certainties and many uncertainties about multiquarks

Slides:



Advertisements
Similar presentations
Kernfysica: quarks, nucleonen en kernen
Advertisements

HL-2 April 2004Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-2) Quarkonium Charmonium spectrum quark-antiquark potential chromomagnetic.
J. Vijande EFB22/ J. Vijande1 Multiquark systems from a quark model perspective The 22nd European Conference on Few-Body Problems in Physics.
Heavy quark spectroscopy and accurate prediction of b-baryon masses in collaboration with Marek Karliner, B. Keren-Zur and J. Rosner H.J. Lipkin.
P461 - particles I1 all fundamental with no underlying structure Leptons+quarks spin ½ while photon, W, Z, gluons spin 1 No QM theory for gravity Higher.
Tetraquark states in Quark Model Jialun Ping Youchang Yang, Yulan Wang, Yujia Zai Nanjing Normal University 中高能核物理大会 November 5-7, 2009, Hefei.
Workshop honoring the 70th birthday of SCADRON 70 Workshop on "Scalar Mesons and Related Topics" February 11-16, 2008, at IST in Lisbon, Portugal RECENT.
Su Houng Lee – (ExHIC coll.) 1. Recent findings of “Multiquark states” + several comments 2. Statistical vs Coalescence model for hadron production 3.
EXOTIC MESONS WITH HIDDEN BOTTOM NEAR THRESHOLDS D2 S. OHKODA (RCNP) IN COLLABORATION WITH Y. YAMAGUCHI (RCNP) S. YASUI (KEK) K. SUDOH (NISHOGAKUSHA) A.
Sevil Salur for STAR Collaboration, Yale University WHAT IS A PENTAQUARK? STAR at RHIC, BNL measures charged particles via Time Projection Chamber. Due.
1 The theoretical understanding of Y(4260) CONG-FENG QIAO Graduate School, Chinese Academy of Sciences SEPT 2006, DESY.
Non-standard mesons in BES III?
Munich, June 16th, 2010Exotic gifts of nature1 XIV International Conference on Hadron Spectroscopy J. Vijande University of Valencia (Spain) A. Valcarce,
Molecular Charmonium. A new Spectroscopy? II Russian-Spanish Congress Particle and Nuclear Physics at all Scales and Cosmology F. Fernandez D.R. Entem,
Multiquark states Kerkyra September 11th Franco Buccella, Napoli 1)Historical introduction 2)Spectrum given by the chromo-magnetic interaction 3)Selection.
Hadron Spectroscopy with high momentum beam line at J-PARC K. Ozawa (KEK) Contents Charmed baryon spectroscopy New experiment at J-PARC.
PLAUSIBLE EXPLANATION FOR THE   (2000) PUZZLE HADRON 2011 XIV International Conference On Hadron Spectroscopy München, June 2011.
I=1 heavy-light tetraquarks and the Υ(mS) → Υ(nS)ππ puzzle Francisco Fernández Instituto de Física Fundamental y Matemáticas University of Salamanca.
1 Hadron Physics at RHIC Su Houng Lee 1. Few words on hadronic molecule candidates and QCD sum rules 2. Few words on diquarks and heavy Multiquark States.
Qiang Zhao Theory Division Institute of High Energy Physics Chinese Academy of Sciences 第十届全国粒子物理学术会议,南京, 2008 年 4 月 日 Search for Z(4430) in meson.
Hadron 2015 / A. Valcarce1/19 Unraveling the pattern of XYZ mesons. Phys. Lett. B 736, 325 (2014) Phys. Rev. Lett. 103, (2009); Phys. Rev. D 79,
1 Heavy multiquark systems from heavy ion collisions Su Houng Lee 1. Few words on light Multiquark States and Diquarks 2. Few words on heavy Multiquark.
A closer look to the H dibaryon Teresa Fernández Caramés (U. Salamanca) poster2.jpg [T.F.C and A. Valcarce, Physical Review C 85, (2012)]
Su Houng Lee – (ExHIC coll.) 1. Few words on recent observations of Multiqaurk states 2. Particle production in Heavy Ion Collision 3. Exotica from Heavy.
The quark model FK7003.
University of Salamanca
Hadron Physics at Belle
The study of pentaquark states in the unitary chiral approach
Molecular Structures in Hidden Charm Meson and Charmed Baryon Spectrum
Puzzles in Quarkonium Hadronic Transition with Two Pion Emission
Hadron spectroscopy Pentaquarks and baryon resonances
P. Gubler, T.T. Takahashi and M. Oka, Phys. Rev. D 94, (2016).
Masses & Magnetic Moment of Charmed Baryons in Hyper Central Model
Structure of Mass Gap Between Two Spin Multiplets
Observation of the DsJ(2463)Dspo & Confirmation of the DsJ(2317)Dspo
Photoproduction of K* for the study of the structure of L(1405)
E. Wang, J. J. Xie, E. Oset Zhengzhou University
Heavy quark spectroscopy and accurate prediction of b-baryon masses
Heavy quark spectroscopy and prediction of bottom baryon masses
Remarks on the hidden-color component
Photoproduction of K* for the study of L(1405)
Charm spectroscopy 1 A. Drutskoy University of Cincinnati
Theoretical aspects of exotic hadrons
Brian Meadows, U. Cincinnati
Scalar Meson σ(600) in the QCD Sum Rule
Exotic and Conventional Quarkonium Physics Prospects at Belle II
On the nature of the X(3872) J. Vijande University of Valencia (Spain)
Possible Interpretations of DsJ(2632)
Exotic charmed four-quark mesons: molecules versus compact states
Five-body calculation of heavy pentaquark system
Decoding the riddle of Y(4260) and Zc(3900) Qiang Zhao
Charm2010 4TH International Workshop on Charm Physics
d*, a quark model perspective
Charmonium spectroscopy above thresholds
The 5-th International Conference on Quarks and Nuclear Physics
Chiral Structure of Hadronic Currents
HADRON 2015 XVI International Conference on Hadron Spectroscopy
Hadron structure: quark-model analysis A. Valcarce
Interpretation of the observed hybrid candidates by the QGC Model
PHYS 3446 – Lecture #23 Standard Model Wednesday, Apr 25, 2012
From J/ψ to LHCb Pentaquark ……and beyond
International Conference On The Structure of Baryons
Nuclear Physics Group and IUFFyM University of Salamanca
Understanding DsJ*(2317) and DsJ(2460)
Mitja Rosina THE BINDING ENERGY OF THE Ξcc++ BARYON
Heavy quark exotica and heavy quark symmetry
AN EXPLANATION OF THE D5/2-(1930) AS A rD BOUND STATE
Sixth International Conference on Quarks and Nuclear Physics
XIV International Conference
Edward Shuryak Stony Brook
Presentation transcript:

A few certainties and many uncertainties about multiquarks The Seventh Asia-Pacific Conference on Few-Body Problems in Physics A few certainties and many uncertainties about multiquarks A. Valcarce (Univ. Salamanca) J. Vijande, J.-M. Richard APFB 2017 / A. Valcarce

1.- Introduction: A way forward 2.- Simple systems – Simple models (All-heavy) tetraquarks: Chromoelectric models String models Dibaryons and baryonia: Chromoelectric models Chromomagnetic models Hidden flavor pentaquarks: AL1 model 3.- Unravelling the pattern of XYZ mesons Molecular states: BCN or CQC Coupled channel effects  Hidden color vectors A quark-model mechanism for the XYZ mesons 4.- Conclusions APFB 2017 / A. Valcarce Outline

Experiment: The first hidden-charm exotic states (1974) M = 3.105 GeV  < 1.3 MeV BNL SLAC M = 3.695 GeV  = 2.7 MeV M = 3.1 GeV   0 MeV SLAC APFB 2017 / A. Valcarce 1.- Introduction

Theory: Predictions APFB 2017 / A. Valcarce 1.- Introduction

Chromoelectric central potential: Theory: Predictions Chromoelectric central potential: T. Barnes et al., Phys. Rev. D72, 054026 (2005) Chromomagnetic spin-spin term: Chromomagnetic spin-orbit term: APFB 2017 / A. Valcarce 1.- Introduction

New experimental challenges (2003) <2.3 MeV Ds0*(2317), JP=0+, <3.8 MeV Ds1(2460), JP=1+,  < 3.5 MeV APFB 2017 / A. Valcarce 1.- Introduction

XYZ mesons LHCb pentaquarks WASA dibaryon Baryonia ………? Are all these resonances (if they really exist!) multiquark states and/or hadron-hadron molecules? Back to 1974: A challenge for theory!! |ccnn |nnnnc | Meson (B=0)  |qq , |qqqq | Baryon (B=1)  |qqq , |qqqqq Predictions: An experimental challenge!! APFB 2017 / A. Valcarce 1.- Introduction

(All-heavy) tetraquarks J.-M.R., A.V., J.V., Phys. Rev. D 95, 054019 (2017) (All-heavy) tetraquarks Many speculations about the stability of (Q1Q2Q3Q4): (cccc), (bbcc), (bccc), … Extrapolation of quarkonium dynamics to higher configurations New color substructures: 33 and 66 3- or 4-body forces: many-body confining forces Role of antisymmetry: may penalize favourable components Chromoelectric (CE) limit (Two-body forces and color as a global operator) Limit of very heavy constituents: Neglect chromomagnetic terms  (mi mj)-1  Atomic physics Atomic physics (e+ e+ e- e-)  Ps2 positronium molecule, stable although with tiny binding (p p e- e-)  H2 hydrogen molecule, stable with a comfortable binding Stability depends critically on the masses involved: (M+ M+ m- m-) more stable than (m+ m+ m- m-) But (M+ m+ M- m-) unstable if M/m  2.2 APFB 2017 / A. Valcarce 2.- Simple systems – Simple models

2.- Simple systems – Simple models Symmetry breaking QM  Min (p2 + x2 + lx) [E=1-l2/4] < Min (p2 + x2)  Min (Heven + Hodd) < Min (Heven) Min (M+ M+ m- m-) < Min (m+ m+ m- m-),, 2m-1=M-1+m-1 They have the same threshold Min (HC-even + HC-odd) < Min (HC-even) H2 is more stable tan Ps2 Thus (M+ m+ M- m-) more stable than (m+ m+ m- m-) ???? Symmetry breaking benefits more to (M+M-)+(m+m-) One may expect some kind of metastability below (M+m-)+(m+M-) In short: (Un)favourable symmetry breaking can (spoil)generate stability Breaking particle symmetry No!! APFB 2017 / A. Valcarce 2.- Simple systems – Simple models

2.- Simple systems – Simple models Symmetry breaking Equal-mass case: Asymmetry in the potential energy  Highest energy: equal gij (rigorous)  Lowest energy: broader distribution of gij (1234) V(rij) gij g g Ps(13) + Ps(24) -1/rij {0,1,0,0,1,0} 1/3 0.52 Ps2 {-1,1,1,1,1,-1} 1.03 |T [(qq)3(qq)3] -1/rij, rij {1/2,1/2,1/4,1/41/4,1/4} 0.13 |M [(qq)6(qq)6] {-1/4,-1/4,5/8,5/8,5/8,5/8} 0.45 × Multiquarks Tetraquarks are penalized by the non-Abelian nature of color Ps2 favored compared to quark models  (QQQQ) unstable in naive CE limit Likewise H2, (QQqq) would stable for large M/m ratio (QqQq) strongly dependent on the presence of two thresholds Delicate four-body problem: Mixing effects do not help much Approximations may favor binding artificially APFB 2017 / A. Valcarce 2.- Simple systems – Simple models

Improved chromoelectric model: Many-body confining forces A,D (adiabatic) bound !! BUT B,C (color+antisymmetry) unbound A  String model with |T B  String model with |T and |M C  Pairwise with |T and |M D  Adiabatic limit of C Bound Unbound (M+ M+ m- m-)  QQqq (M+ m+ M- m-)  QQqq Bound Unbound Flip-flop B  u Butterfly J.V., A.V., J.-M.R., Phys. Rev. D 76, 114013 (2007), Phys. Rev. D 87, 034040 (2013) APFB 2017 / A. Valcarce 2.- Simple systems – Simple models

All-heavy tetraquarks (bbbb) and (cccc) are unstable in coherent 4-body estimates in naive CE models. They follow the trends of (++) in atomic physics, but less favourable due to the non-Abelian algebra of color charges. (bcbc) might have some opportunities as compared to (bbbb) and (cccc) (bc)(cb)  MM BUT (bcbc) there are two different thresholds (bb)(cc)   J THUS it may present metastability below the MM threshold (degeneracy!!) (bbcc) although more delicate: best candidate to be stable Benefits from C-conjugation breaking There is a single threshold (QQqq) favored in the CE limit due to the striking M/m dependence For non-identical quarks and antiquarks, string potentials offer good opportunities APFB 2017 / A. Valcarce 2.- Simple systems – Simple models

Similar findings: Baryonia (Q3q3) and dibaryons (Q3q3) Phys. Rev. D 85, 014019 (2012) J.V., A.V., J.-M.R., APFB 2017 / A. Valcarce 2.- Simple systems – Simple models

Chromomagnetic term: Dibaryons (qqqq'QQ') J.V., A.V., J.-M.R., P.S., Phys. Rev. D 94, 034038 (2016) Color + Antisymmetry JP=0+ Conflict between CE and CM It goes against binding APFB 2017 / A. Valcarce 2.- Simple systems – Simple models

Hidden flavor pentaquarks: (QQqqq) AL1 Three color vectors for each Jacobi coordinate arrangement Two of them with hidden color: octet-octect Basic contribution of hidden-color components: 15 color-spin vectors for J=1/2 or 12 for J=3/2 The color octet (qqq) configuration receives a more favourable chromomagnetic energy than the color singlet  in the threshold: Color chemistry: H. Hogaasen, P. Sorba, Nucl. Phys. B145, 119 (1978) Perhaps still narrow! Below S-wave threshold but above D-wave one. Stable! Below S- and D-wave thresholds APFB 2017 / A. Valcarce 2.- Simple systems – Simple models

2.- Simple systems – Simple models The binding is a cooperative effect of CE and CM effects, disappearing in the CE limit The wave function contains color sextet and color octet configurations for the subsystems and can hardly be reduced to a molecular state made of two interacting color-singlet hadrons CE + CM  CE APFB 2017 / A. Valcarce 2.- Simple systems – Simple models

Molecular QnQn states: BCN and CQC QnQn (Non exotic) QQnn (Exotic) Compact No states due to the presence of two thresholds JP=1+ Phys. Rev. D 76, 094022 (2007) Phys. Rev. D 79, 074010 (2009) Molecular (I)JPC=(0)1++  X(3872) (I)JPC=(1)2++ (Exotic) Phys. Rev. Lett. 103, 222001 (2009) Phys. Rev. D 82, 054032 (2010) Molecular How the molecular QnQn states are formed in a quark model framework? APFB 2017 / A. Valcarce 3.- Unravelling the pattern of XYZ mesons

Coupled channel effect  Hidden color vectors J/ w T.F.C., A.V., J.V., Phys. Lett. B 709, 358 (2012) c n D APFB 2017 / A. Valcarce 3.- Unravelling the pattern of XYZ mesons

There should not be a partner of the X(3872) in the bottom sector There should be a JP=1+ bound state in the exotic bottom sector QnQn T.F.C., A.V., J.V., Phys. Lett. B 699, 291 (2011) T.F.C., A.V., Phys. Lett. B 758, 244 (2016) Q  c Q  b QQnn APFB 2017 / A. Valcarce 3.- Unravelling the pattern of XYZ mesons

 A quark-model mechanism for XYZ mesons (QnQn) (bnbn) (QQ)(nn) L=0,S=1,C=+1,P=+1,I=0 (QQ)(nn) (Qn)(nQ) Central Spin-spin MQQ + Mnn  MQn + MnQ (bnbn) L=0,S=1,C=+1,P=+1,I=1 (Qn)(nQ) (Qn)(nQ)  aQn  (QQ)(nn) APFB 2017 / A. Valcarce 3.- Unravelling the pattern of XYZ mesons 20/21

Conclusions In multiquark studies, both CE and CM effects have to be included, color may generate conflicts between the preferred configurations. All-heavy tetraquarks are unstable in naive CE models. (QqQq) might have some opportunities of metastability below the MM threshold, which is extremely important for the existence of the X(3872) in the charm sector. (QQqq) are definitively the best candidates for stable multiquark states due to the striking M/m dependence in the CE limit. Besides, for non-identical quarks and antiquarks, string potentials offer good opportunities. Hidden heavy flavor pentaquarks are predicted if there is chromomagnetic interaction due to hidden-color component dynamics. Hidden flavor components (unquenching the quark model) offer a possible explanation of new experimental data and old problems in the meson and baryon spectra. There is not a proliferation of multiquarks, they are very rare. We have presented a plausible mechanism explaining the origin of the XYZ mesons: based on coupled-channel effects. We do not find evidence for charged and bottom partners of the X(3872). To answer this question is a keypoint to advance in the study of hadron spectroscopy. APFB 2017 / A. Valcarce 4.- Conclusions 21/21