Chapter 12 The Cell Cycle.

Slides:



Advertisements
Similar presentations
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Advertisements

6/10/2015 The Cell Cycle Omnis cellula e cellula The cell cycle is an ordered set of events, culminating in cell growth and division into two daughter.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Multicellular organisms depend on cell division for:
● The ability of organisms to reproduce best distinguishes living things from nonliving matter
The Cell Cycle & Mitosis “Omnis cellula e cellula.” “Every cell from a cell.” —Rudolph Virchow, Germany, 1855.
Overview: The Key Roles of Cell Division
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
CHAPTER 12 THE CELL CYCLE Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Section A: The Key Roles of Cell Division 1.Cell division.
CH 12 NOTES, part 1: Chromosomes, the Cell Cycle, and Cell Division.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Why Cells divide? In unicellular organisms, division of one cell reproduces the.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
The Cell Cycle. In unicellular organisms, division of one cell reproduces the entire organism In unicellular organisms, division of one cell reproduces.
Chapter 9 Cell Cycle and Mitosis.
CHAPTER 12 The Cell Cycle. The Key Roles of Cell Division cell division = reproduction of cells All cells come from pre-exisiting cells Omnis cellula.
Lecture ??? Date ______ Chapter 12~ The Cell Cycle.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Cell Cycle.
The division of a unicellular organism reproduces an entire organism, increasing the population. Cell division functions in reproduction, growth, and repair.
Overview: The Key Roles of Cell Division The ability of organisms to reproduce best distinguishes living things from nonliving matter The continuity of.
The Cell Cycle Cellular and nuclear division Boehm 2013.
Cell reproduction and the division of the NUCLEUS and CYTOPLASM.
The Cell Cycle. What is the cell cycle? The Stages of the life of the cell Involve: 1. Metabolic activities 2. Division.
 Purpose of cell division › Unicellular organisms  Reproduction › Multicellular organisms  Development from a fertilized cell  Growth  Repair.
The Cell Cycle Introduction: Key Roles of Cell Division The ability of organisms to reproduce their kind is one characteristic.
Chapter 9 Mitosis and Meiosis Review graphics. Fig µmChromosomes Chromosome duplication (including DNA synthesis) Chromo- some arm Centromere.
Chapter 12 The Cell Cycle.  The continuity of life  Is based upon the reproduction of cells, or cell division.
CELL DIVISION AND REPRODUCTION
CELL DIVISION AND REPRODUCTION © 2012 Pearson Education, Inc.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Fig Figure 12.1 How do a cell’s chromosomes change during cell division?
Cell Division: Key Roles
Chapter 12: The Cell Cycle 1.
Lecture #5 Date ______ Chapter 12~ The Cell Cycle.
Chapter 15 The Eukaryotic Cell Cycle, Mitosis, & Meiosis
Overview: The Key Roles of Cell Division
Mitosis is conventionally divided into five phases:
The Cell Cycle Chapter 12.
Chapter 12 – The Cell Cycle
Chapter 12 The Cell Cycle.
The Key Roles of Cell Division
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 9 Mitosis.
Chapter 9 Cell Cycle.
Cell Cycle and Cell Communication 3. A
Chapter 12 The Cell Cycle.
Overview: The Key Roles of Cell Division
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 8 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Lecture 6: Cell division
Chapter 12 The Cell Cycle.
Cell Biology I. Overview
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Cell Cycle Review 3.A.2 – In eukaryotes, heritable information is passed to the next generation via processes that include the cell cycle, meiosis and.
Presentation transcript:

Chapter 12 The Cell Cycle

Overview: The Key Roles of Cell Division The ability of organisms to reproduce best distinguishes living things from nonliving matter The continuity of life is based on the reproduction of cells, or cell division Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 12-1 Figure 12.1 How do a cell’s chromosomes change during cell division?

Multicellular organisms depend on cell division for: In unicellular organisms, division of one cell reproduces the entire organism Multicellular organisms depend on cell division for: Development from a fertilized cell Growth Repair Cell division is an integral part of the cell cycle, the life of a cell from formation to its own division Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

(a) Reproduction (b) Growth and development (c) Tissue renewal 100 µm Fig. 12-2 100 µm 200 µm 20 µm (a) Reproduction (b) Growth and development (c) Tissue renewal Figure 12.2 The functions of cell division

100 µm (a) Reproduction Fig. 12-2a Figure 12.2 The functions of cell division (a) Reproduction

(b) Growth and development Fig. 12-2b 200 µm Figure 12.2 The functions of cell division (b) Growth and development

20 µm (c) Tissue renewal Fig. 12-2c Figure 12.2 The functions of cell division (c) Tissue renewal

Concept 12.1: Cell division results in genetically identical daughter cells Most cell division results in daughter cells with identical genetic information, DNA A special type of division produces nonidentical daughter cells (gametes, or sperm and egg cells) Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Cellular Organization of the Genetic Material All the DNA in a cell constitutes the cell’s genome A genome can consist of a single DNA molecule (common in prokaryotic cells) or a number of DNA molecules (common in eukaryotic cells) DNA molecules in a cell are packaged into chromosomes Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 12-3 Figure 12.3 Eukaryotic chromosomes 20 µm

Somatic cells (nonreproductive cells) have two sets of chromosomes Every eukaryotic species has a characteristic number of chromosomes in each cell nucleus Somatic cells (nonreproductive cells) have two sets of chromosomes Gametes (reproductive cells: sperm and eggs) have half as many chromosomes as somatic cells Eukaryotic chromosomes consist of chromatin, a complex of DNA and protein that condenses during cell division Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Distribution of Chromosomes During Eukaryotic Cell Division In preparation for cell division, DNA is replicated and the chromosomes condense Each duplicated chromosome has two sister chromatids, which separate during cell division The centromere is the narrow “waist” of the duplicated chromosome, where the two chromatids are most closely attached Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

0.5 µm Chromosomes DNA molecules Chromo- some arm Chromosome Fig. 12-4 0.5 µm Chromosomes DNA molecules Chromo- some arm Chromosome duplication (including DNA synthesis) Centromere Sister chromatids Figure 12.4 Chromosome duplication and distribution during cell division Separation of sister chromatids Centromere Sister chromatids

Eukaryotic cell division consists of: Mitosis, the division of the nucleus Cytokinesis, the division of the cytoplasm Gametes are produced by a variation of cell division called meiosis Meiosis yields nonidentical daughter cells that have only one set of chromosomes, half as many as the parent cell Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Concept 12.2: The mitotic phase alternates with interphase in the cell cycle In 1882, the German anatomist Walther Flemming developed dyes to observe chromosomes during mitosis and cytokinesis Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Phases of the Cell Cycle The cell cycle consists of Mitotic (M) phase (mitosis and cytokinesis) Interphase (cell growth and copying of chromosomes in preparation for cell division) Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Interphase (about 90% of the cell cycle) can be divided into subphases: G1 phase (“first gap”) S phase (“synthesis”) G2 phase (“second gap”) The cell grows during all three phases, but chromosomes are duplicated only during the S phase Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

S (DNA synthesis) G1 Cytokinesis G2 Mitosis Fig. 12-5 INTERPHASE S (DNA synthesis) G1 Cytokinesis G2 Mitosis Figure 12.5 The cell cycle MITOTIC (M) PHASE

Mitosis is conventionally divided into five phases: Prophase Prometaphase Metaphase Anaphase Telophase Cytokinesis is well underway by late telophase For the Cell Biology Video Myosin and Cytokinesis, go to Animation and Video Files. BioFlix: Mitosis Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Chromosome, consisting of two sister chromatids Fig. 12-6 G2 of Interphase Prophase Prometaphase Metaphase Anaphase Telophase and Cytokinesis Centrosomes (with centriole pairs) Chromatin (duplicated) Early mitotic spindle Aster Centromere Fragments of nuclear envelope Nonkinetochore microtubules Metaphase plate Cleavage furrow Nucleolus forming Figure 12.6 The mitotic division of an animal cell Daughter chromosomes Nucleolus Nuclear envelope Plasma membrane Chromosome, consisting of two sister chromatids Kinetochore Kinetochore microtubule Spindle Centrosome at one spindle pole Nuclear envelope forming

G2 of Interphase Prophase Prometaphase Fig. 12-6a Figure 12.6 The mitotic division of an animal cell G2 of Interphase Prophase Prometaphase

Chromosome, consisting of two sister chromatids Fig. 12-6b G2 of Interphase Prophase Prometaphase Centrosomes (with centriole pairs) Chromatin (duplicated) Early mitotic spindle Aster Centromere Fragments of nuclear envelope Nonkinetochore microtubules Figure 12.6 The mitotic division of an animal cell Nucleolus Nuclear envelope Plasma membrane Chromosome, consisting of two sister chromatids Kinetochore Kinetochore microtubule

Telophase and Cytokinesis Fig. 12-6c Figure 12.6 The mitotic division of an animal cell Metaphase Anaphase Telophase and Cytokinesis

Telophase and Cytokinesis Fig. 12-6d Metaphase Anaphase Telophase and Cytokinesis Metaphase plate Cleavage furrow Nucleolus forming Figure 12.6 The mitotic division of an animal cell Daughter chromosomes Nuclear envelope forming Spindle Centrosome at one spindle pole