How to import and interpret seismic refraction data using IXRefraX

Slides:



Advertisements
Similar presentations
IXRefraX Shootout Tutorial
Advertisements

Tutorial 3 Refractor assignment, Analysis, Modeling and Statics
Working with Profiles in IX1D v 3 – A Tutorial © 2006 Interpex Limited All rights reserved Version 1.0.
Importing TEM Data into IX1D v 3 using TEM2IX1D– A Tutorial © 2012 Interpex Limited All rights reserved Version 1.0.
Interpreting Data in IX1D v 3 – A Tutorial
Boulder, Colorado USA May, 2004
Introducing Macromedia FreeHand MX
Importing Data into IX1D v 3 – A Tutorial © 2006 Interpex Limited All rights reserved Version 1.0.
Working with Tables for Page Design – Lesson 41 Working with Tables for Page Design Lesson 4.
IXRefraX Shootout Tutorial Interpretation of Trimmed SAGEEP 2011 “Shootout” refraction tomography data using IXRefraX © 2011 Interpex Limited.
Microsoft Excel. Click on “Start,” then “Microsoft Office Excel.”
 Use the Left and Right arrow keys or the Page Up and Page Down keys to move between the pages. You can also click on the pages to move forward.  To.
Select New Project from Project menu to create a new project File.
Understanding Microsoft Excel
MultiLoop III - Tutorial 3 Creating a Grid & Plotting Vectors (Continued from Tutorial 2)
IX2D-GM Tutorial How to import and interpret gravity and magnetics data using IX2D-GM © 2010 Interpex Limited Version 1.00.
Page Features Footnotes and endnotes Headers and footers Page numbering Margins Columns.
Creating Rout Paths Using CAMMaster. Step 1 Import Gerber File. Import Gerber File. User Ctrl+W to window around data. User Ctrl+W to window around data.
GG450 April 22, 2008 Seismic Processing.
Civil 114 Civil Engineering Drawing AutoCAD
XP New Perspectives on Microsoft Office Access 2003, Second Edition- Tutorial 2 1 Microsoft Office Access 2003 Tutorial 2 – Creating And Maintaining A.
XP New Perspectives on Microsoft Office Word 2003 Tutorial 1 1 Microsoft Office Word 2003 Tutorial 1 – Creating a Document.
Creating And Maintaining A Database. 2 Learn the guidelines for designing databases When designing a database, first try to think of all the fields of.
XP 1 Microsoft Office Word 2003 Tutorial 1 – Creating a Document.
WinSism refraction seismic of W_GeoSoft Geo2X SA
Reducing Well Logs in IX1D v 3 – A Tutorial © 2006 Interpex Limited All rights reserved Version 1.0.
Course 4: Using AdvancedWell Editor Tools. Log curves are resampled.
XP New Perspectives on Microsoft Access 2002 Tutorial 41 Microsoft Access 2002 Tutorial 4 – Creating Forms and Reports.
Microsoft Office Word 2003 Tutorial 1 Creating a Document.
Lesson No:9 MS-Word Tools, Mail Merge and working with Tables CHBT-01 Basic Micro process & Computer Operation.
 Starting Excel 2003  Using Help  Workbook Management  Cursor Management  Manipulating Data  Using Formulae and Functions  Formatting Spreadsheet.
EDT Chapter 41 Review - Linetypes Sacramento City College EDT 310.
WORKBOOK FORMATTING Nolan Tomboulian Tomboulian.wikispaces.com HOW THINGS LOOK CELL COLORFONT COLOR CELL BORDERSFONT SIZE CELL SIZEFONT.
Getting Started With AutoCAD ENGR 2 Week #1 Laboratory.
XP New Perspectives on Microsoft Access 2002 Tutorial 21 Microsoft Access Tutorial 2 – Creating And Maintaining A Database.
1 Draw Mode. 2 Notable Points (RMB) End point: Snaps to the closest end point of the selected entity. Mid point: Snaps to the middle point of the selected.
Processing Lab 3 – Header issues and trace editing Bryce Hutchinson Objectives: Fixing elevation issues Define an LMO function Pick first breaks Kill traces.
Attachments Overview Converting pre-Petrel seismic projects
This is what we want to draw Extrude Mirror Round Edges.
SKETCHING IN Pro/ENGINEER Part 1. Improved Intent Manager n Terminology –Entity, origin, constraint, reference, relation, parameter, weak dimension, strong.
Processing Lab 2 – Geometry Bryce Hutchinson Objectives: Add a dictionary Gain a better understanding of header issues Display geometry correctly Visualize.
Strategy Using Strategy1. Scan Path / Strategy It is important to visualize the scan path you want for a feature before you begin taking points on your.
Course 5: Building 2D Stratigraphic Modeling Relationships.
Chapter 3 Response Charts.
Entering Your Traverse Data In MineSight ©Feb 2009 Dr. B. C. Paul Note – the following presentation includes screen shots an operating suggestions for.
XP Foundation year Lec.4: Lec.4: Word Processing Software Using Microsoft Office 2007 Lecturer: Dalia Mirghani Year : 2014/2015.
Grips - Automatic Editing1 Sacramento City College Engineering Design Technology.
Introduction to Drafting and Design In order to begin our drawing we have to set the drawing limits or the paper size.
Bryce Hutchinson & Sumit Verma
Understanding Microsoft Excel Lesson 1 – Microsoft Excel 2013.
Changing a Word table format Changing a Word table format (1 of 5) 1. Double click the Word table you want to edit. 1.
Course 3: Using Basic Well Editor Tools. Can open multiple files and sort by different parameters.
XP Tutorial 3 Creating Animations. XP New Perspectives on Macromedia Flash MX Elements of Animation Layers are used to organize the content of.
Claritas 3D REFSTAT: Refraction statics calculations.
RAYFRACT ® Tutorialfor Seismic Refraction Tomography Copyright © Intelligent Resources Inc. All rights reserved.
Info Read SEGY Wavelet estimation New Project Correlate near offset far offset Display Well Tie Elog Strata Geoview Hampson-Russell References Create New.
Train Body The next series of slides will guide you through the construction of the train body. Start a new drawing and save it as Train Body.
Autodesk Inventor Design Exercise 2: F1 Team Challenge Car Developed by Tim Varner – Synergis Technologies © Tim Varner
Key Applications Module Lesson 12 — Word Essentials Computer Literacy BASICS.
Version 1.0 3/23/2007 © 2007 ANSYS, Inc. All rights reserved. Inventory # W4-1 BladeModeler 11.0 ANSYS, Inc. Proprietary ANSYS BladeModeler 11.0.
Understanding Microsoft Excel
Tutorial : improving first break picks for profile SLOPE1
Understanding Microsoft Excel
Learning Objectives • Dynamic Input Line tool. • Coordinate systems.
Understanding Microsoft Excel
1.
DREAMWEAVER MX 2004 Chapter 3 Working with Tables
Understanding Microsoft Excel
How to import and interpret seismic refraction data using IXRefraX
Presentation transcript:

How to import and interpret seismic refraction data using IXRefraX IXRefraX Tutorial Version 1.02 How to import and interpret seismic refraction data using IXRefraX © 2005, 2006 Interpex Limited

Import & Interpretation Sequence Use File/Create Spread to import data. Use Edit/Pick Breaks to verify picks; in trace window, use Edit Shot Header to correct geometry. Examine data to estimate layered model. Use Calculate/Estimate Model to generate a 2-D model of the section. Use Calculate/Estimate Layer Assignments and Estimate Reciprocal Times. Use Calculate/GRM Interpretation to generate GRM Section.

Use File/Create Spread to import data. The first step in creating a spread is to select the import format for the data. If you have original trace data files from the field stored in SEG-2, SEG-Y or one of the older SEG-1 formats, select the first option. If you have imported these into IXSeg2Segy and stored them in its native .TRX format, select the second option. If you have tabulated data in the GREMIX .GRM format, select the third option. If your data are in flat ASCII file format, one shot per file, select the fourth option. If your data are in flat ASCII file format, multiple shots in a single file, select the fifth option. First, select input format

Use File/Create Spread to import data. Right-click in an empty area inside the file selection window to bring up the right-click menu, then select Arrange Icons By and select name, size, type or modified (date in Win 98) to arrange icons for simpler selection of files to import. Second, select file ordering to make selection easier.

Use File/Create Spread to import data. Use the mouse along with the shift or control key to select all files you wish to import, then press the Open button. Third, select files to import, then press Open. You can select all shots along the profile line. We will select one Spread in this tutorial for brevity.

Use Edit/Pick Breaks to verify picks Note that center shot has shot point at wrong location and that several break picks are obviously not correct If the imported files contain first break information, these breaks are imported along with the trace data. If they do not, then the data are automatically picked using a simple algorithm. Break picks are read from trace file. If not available, auto picking takes place. Edit/Pick Breaks starts with first file in sequence. Not applicable if tabulated ASCII data were read.

Use Edit/Pick Breaks to verify picks Pop-up window magnifies trace at mouse cursor. Clicking or pressing space bar picks break. Moving mouse or using up/down arrow selects sample, moving mouse or using left/right arrow selects trace. File/Next (Previous) Shot selects next (previous) shot in sequence.

Use Edit/Pick Breaks to verify picks Use View/Pick Window to toggle pop-up window on or off. Use C or E to Contract or Expand trace area magnified. Use + or – to increase or decrease gain of trace in window. Use View/Properties to change gain method & AGC length for best display

Use Edit/Shot Header to verify geometry If the correct geometry was entered by the operator in the field or if it was later entered in the mobile lab or office, you may want to check it for accuracy against the operator’s notes. If it was not entered correctly, you will need to enter the correct geometry. Use the menu option Edit/Shot Header to do this. We have adjusted the gain to AGC, 30% window length, trace width to 5 and clip to 2. If the geometry read from the trace file was not correct (or never was entered) you can edit the geometry in the shot header by selecting Edit/Shot Header. You can also do this by right-clicking on the travel time curve and selecting Edit Shot Header.

Use Edit/Shot Header to verify geometry The easiest way to get the geometry entered for the first shot is to use the Create Geometry button. This allows for creation of both constant spacing and tapered spreads. For constant spacing, Create Geometry fills in both the Easting and Northing columns, using the first geophone location, the azimuth, and the constant geophone spacing. For azimuth of zero (north going line), the easting coordinate is copied to all cells, while the northing is incremented by the geophone spacing. For an azimuth of 90 degrees, the easting coordinate is incremented by the geophone spacing while the northing coordinate is copied to all cells, and so on. For a symmetric tapered spread, the number of spacings and spacing value are entered in pairs. For the last value, the number must be entered but it is not used as the last spacing is repeated as often as needed to fill in the center of the spread. Once again, the first geophone location is used to locate the spread. For an asymmetric tapered spread, a little math is required to make it work right. The total number of spacings must be the number of geophones minus 1. If it is not, the last spacing is repeated at the end of the spread and the geometry may turn out to be different than intended. Thus, it is important that the user figure the repeat factor for all spacings. Once again, the first geophone position is used to locate the spread. If you have geometry values in a spreadsheet, like Excel for instance, you can copy and paste them into the grid in the Shot Header Editor dialog box. Simply select the cells in the spreadsheet, then copy (or press control-C), click on the first cell in the grid in the Shot Header Editor dialog box and press control-V to paste them. Most geometries can be created using the Create Geometry dialog, including constant spacing, symmetric or asymmetric tapered spreads. Geometries can be saved for later use and can be moved laterally by using the Add To feature. Geometry can also be copy/pasted into the grid from a Windows spreadsheet

Examine data to estimate model. Right-clicking on a travel time curve pops up a menu. Select Flat Refraction Interpretation to estimate velocities and depths from Time-Intercept analysis. Select Display Traces to repick the breaks or Edit Shot Header to change the geometry. For interior shots, click on a point to the right or left of the shot to interpret the respective side using TI analysis.

Examine data to estimate model. Examine a number of the travel time curve segments, trying to determine the number of layers, their velocities and thicknesses, Be careful to look at curves which are most representative of a layered earth. For dipping layers, average the results from forward and reverse curves to get a more reasonable estimate.

Estimate the Model Use Calculate/Estimate Model to select number of layers, topography following factor and the number of geophones per node in the model. Then press OK and enter your estimates of the surface and layer velocities and layer thickness. An inversion process will find the best possible fit from these starting values.

Results of Model Estimation When the iterations are finished, the final result is displayed and the layers are indicated by color on the traveltime vs. distance display. The main point is that the synthetic curves are a good fit to the data curves and the velocities and depths are not too far from the starting values.

Graphically Editing the Model The vertices in the model can be moved vertically by pointing at them and dragging them. The cursor turns to a crosshair when you point at a vertex and back to an arrow as you drag it. After editing the model, use the Forward and Inverse options to get the synthetic and improve it.

Estimate Layer Assignments and Reciprocal Times – Perform GRM Analysis The dialog shows that the surface velocity will be determined from segments with at least 3 points and an RMS error of fit to a line of 4.5 ms or less. Time-Intercept results require a length of 4 points and RMS fit of 5.5 ms or less. GRM velocity analysis segments require at least 8 points and RMS fit of 4.5 ms or less. Velocity analysis graphs will not be displayed. Duplicate points (overlap) will result in a shift of the far offset data. The next three steps are in the menu Calculate category: Estimate Layer Assignments Estimate Reciprocal Times Create GRM interpretation from Data The first dialog in the GRM interpretation is the Automatic GRM parameters dialog.

Time-Intercept and GRM Velocity Analysis Statistics The surface velocity was determined from 8 segments with 6 to 9 points and RMS fit of 1.4 to 3.8 ms and all 8 were used. Refractor velocities were determined from 10 segments with 4 to 48 points and RMS fit of 0.5 to 3.2 ms and all 10 were used. There were 15 velocity analysis segments with 1 to 47 points and RMS fit of 0.6 to 1.1 ms 11 of these were used and 4 were discarded (for too few points). This information is useful in case too many segments were discarded. You can rerun the GRM analysis with revised parameters. The next dialog shows the statistics from the automatic Time-Intercept and GRM analyses.

GRM Velocity & Time-Depth Results Top graph shows velocities. Surface velocities are the dark lines shown near the top (1000-1250 m/s). The red lines show the velocities determined from time-intercept analysis and the blue and dark blue lines are determined from GRM velocity analysis. Bottom graph shows time-depths. Flat red lines are determined from time-intercept (TI) analysis. Wavy lines are from GRM velocity analysis curves. Pointing at lines from TI analysis changes the cursor to a vertical up arrow. Pointing at lines from GRM analysis changes the cursor to a crosshair.

GRM Velocity Analysis Curves Pointing at one of the GRM time-depth or velocity lines brings up a window showing the travel time (TT) data, the velocity analysis and time depth curves. The velocity and fit error is displayed. Pointing at one of the TT curves changes the cursor to crosshairs. Click to bring up original TT curves. Note TT curves shown may consist of two or more original shot records.

Original Shot Data for GRM Analysis Clicking on a TT curve will bring up all curves used to make up the shot shown with the velocity analysis and time-depth curves. It will also display all overlapping curves which are in the same direction as the selected TT curve. The toolbar and Mode menu allow for two modes of operation: clicking on a TT curve brings up the original shot data for repicking. Right clicking on a point makes it the first on that layer while left clicking makes it the last point on that layer. One mode allows for reassigning arrivals by left or right clicking, second mode allows for display of original shot data for first break picking. OK saves changes, Cancel discards changes.

Masking Selected Segments Right click on a Time-Depth or a Velocity segment to mask or un-mask the segment. Masked segments will not be used in the combination of segments to form composite section. Both GRM and Time-Intercept segments can be masked.

Adjust Time Depths to Match Scatter in Time-Depth curves is due to errors in estimates of Reciprocal Time (Tr) values. Point at curves to see which Tr values were estimated from model. Decide which segments have the more valid Tr estimates and move other curves to match them. When mouse cursor changes to crosshair, press left button and drag segment up or down to match other curves. Adjust Time-Depth curves to remove scatter in reciprocal time estimates.

Perform Detailed X-Y Analysis A range of X-Y values can be used to generate a suite of velocity analysis and time-depth curves. These can be separated from each other by constant time values. Adjust X-Y value for simplest velocity analysis curve and sharpest time-depth curve

Combine Segments to make Composite Slope-Intercept Results can be used to fill in missing values for refractors. Velocities, Time-Depths or both can be used. Can be used for all layers or just for near-surface layers. Velocity and Time-Depth profiles may contain gaps. Gaps can be filled by Using the nearest value to the undefined value Interpolating to find undefined value Or, gaps can be left unfilled. Surface velocity can be ignored, and the Average Velocity concept is then used (velocity found from XY value).

Preview and Edit Section if Desired Section is shown with gaps where values are undefined. Velocity and Time-Depth values can be edited. Press OK to interpolate as selected on previous dialog.

View Composite Section Composite section is averaged from available results. Vertical lines show error bars where more than one value was averaged to get the composite result. Press OK to return to main screen.

Edit Depth Values Graphically Pointing at a vertex in the composite section changes the mouse cursor to a crosshair. Pressing and holding the left mouse button allows you to drag the vertex to a new depth value.

Add Color Fill for Velocity and Arcs for Depths Use View/Draw Arcs to display the wavefronts. Use View/Color Fill Velocity to color fill the velocity information in the model.

Edit Velocity Range and Fill Thickness Velocity fill range should be specified to give good color indication of velocity and to be consistent with other profiles in the same project. Color sequence can be reversed so that low velocities are blue and high velocities are red. Fill thickness for previous slide is 100%. You can select a smaller fill thickness if desired. The angle through which the wavefront arcs are drawn can also be changed. Use View/Properties to control the parameters for velocity color fill and the wavefront arcs.

Output Results to XYZ file Easting and northing coordinates can be written so that each point has a map coordinate. Station or profile coordinates can also be written for distance coordinate (cross-section display). Velocities, depths, elevations and/or time-depths can be selected according to your requirements. For easting and northing coordinates, the line direction can be specified by tie point and direction or by beginning and end tie points. Note the end tie point is only used to calculate the angle and is offered as an alternative to using the angle. It is not used to stretch or compress the line. Use File/Export/Results as XYZ File to write the results to an ASCII file so they can be imported into third party graphics software, for instance.

Output Results to XYZ file The profile distance must tie to a map point. Here, the map point 1956116.0E, 1171150.2N ties to the beginning of the profile at distance zero. The profile direction can be specified as an angle clockwise from north (left dialog). In this case, the profile direction is approximately ENE. 0 is north, 90 is east, 180 is south, 270 is west. The profile direction can be specified using the end point of the profile or any point along the profile or in the same direction beyond the profile.

Output Results to XYZ file The profile distance for these data starts at 2,400 so the original tie point given in the previous slide for station zero does not appear in the output. Note that all of the data need not be written. In this case, all data were selected for writing.