Introduction to particle physics Part IV

Slides:



Advertisements
Similar presentations
Particle Physics Nikos Konstantinidis. 2 3 Practicalities (I) Contact details Contact details My office: D16, 1 st floor Physics, UCLMy office: D16,
Advertisements

Announcements 10/3 Today: Problems 5.11, 5.12, 5.13 Friday: Problems 6.1, 6.2, 6.4 Monday: Read 6E - 6G Problem 6.4 says scalar couplings.
Feynman Diagrams Feynman diagrams are pictorial representations of
Review Chap. 8 Momentum, Impulse, and Collisions
Jørgen Beck Hansen Particle Physics Basic concepts Particle Physics.
QCD-2004 Lesson 1 : Field Theory and Perturbative QCD I 1)Preliminaries: Basic quantities in field theory 2)Preliminaries: COLOUR 3) The QCD Lagrangian.
1 Rene Bellwied, PHY 8800, Winter 2007 Kinematics 1 : Lorentz Transformations all slides are from PDG booklet (by permission)
P461 - nuclear decays1 General Comments on Decays Use Fermi Golden rule (from perturbation theory) rate proportional to cross section or 1/lifetime the.
Charge-Changing Neutrino Scattering from the Deuteron J. W. Van Orden ODU/Jlab Collaborators: T. W. Donnelly and Oscar Morino MIT W. P. Ford University.
Lecture 5: Electron Scattering, continued... 18/9/2003 1
The World Particle content. Interactions Schrodinger Wave Equation He started with the energy-momentum relation for a particle he made the quantum.
The World Particle content All the particles are spin ½ fermions!
Announcements Homework returned now 9/19 Switching to more lecture-style class starting today Good luck on me getting powerpoint lectures ready every day.

P Spring 2003 L9Richard Kass Inelastic ep Scattering and Quarks Elastic vs Inelastic electron-proton scattering: In the previous lecture we saw that.
Physics 321 Hour 37 Collisions in Three Dimensions.
But the integral is not Lorentz invariant! A particle one decay:
Lecture 16: Beta Decay Spectrum 29/10/2003 (and related processes...) Goals: understand the shape of the energy spectrum total decay rate sheds.
Inelastic scattering When the scattering is not elastic (new particles are produced) the energy and direction of the scattered electron are independent.
Probing the Majorana Nature and CP Properties of Neutralinos Yeong Gyun Kim (Korea University) In collaboration with S.Y.Choi, B.C.Chung, J.Kalinoswski.
Calorimeters Chapter 21 Chapter 2 Interactions of Charged Particles - With Focus on Electrons and Positrons -
Oct 2006, Lectures 6&7 Nuclear Physics Lectures, Dr. Armin Reichold 1 Lectures 6 & 7 Cross Sections.
Neutral Current Deep Inelastic Scattering in ZEUS The HERA collider NC Deep Inelastic Scattering at HERA The ZEUS detector Neutral current cross section.
April 23, 2008 Workshop on “High energy photon collisions at the LHC 1 Cem Güçlü İstanbul Technical University Physics Department Physics of Ultra-Peripheral.
Quantum Mechanical Cross Sections In a practical scattering experiment the observables we have on hand are momenta, spins, masses, etc.. We do not directly.
PHYS 3446 – Lecture #6 Monday, Sept. 15, 2008 Dr. Andrew Brandt
1 Methods of Experimental Particle Physics Alexei Safonov Lecture #2.
The inclusion of fermions – J=1/2 particles
1 Methods of Experimental Particle Physics Alexei Safonov Lecture #3.
Lecture 6: Cross Section for Electron Scattering 23/9/2003 Recall from last time: where V n is the normalization volume for the plane wave electron.
accelerator centers worldwide
Physics 842, February 2006 Bogdan Popescu Presentation based on “Introduction to Elementary Particles” by David Griffiths WEAK INTERACTION (1)
The Importance of the TeV Scale Sally Dawson Lecture 3 FNAL LHC Workshop, 2006.
Particle Physics Particle Physics Chris Parkes April/May 2003  Hydrogen atom Quantum numbers Electron intrinsic spin  Other atoms More electrons! Pauli.
Monday, Jan. 31, 2005PHYS 3446, Spring 2005 Jae Yu 1 PHYS 3446 – Lecture #4 Monday, Jan. 31, 2005 Dr. Jae Yu 1.Lab Frame and Center of Mass Frame 2.Relativistic.
Prof. M.A. Thomson Michaelmas Particle Physics Michaelmas Term 2011 Prof Mark Thomson Handout 3 : Interaction by Particle Exchange and QED X X.
Lecture 2 - Feynman Diagrams & Experimental Measurements
Lecture 4 – Quantum Electrodynamics (QED)
Song He Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing.
Laboratory system and center of mass system
M. Sc Physics, 3rd Semester
From Lagrangian Density to Observable
Theory of Scattering Lecture 2.
Handout 3 : Interaction by Particle Exchange and QED
Chapter III Dirac Field Lecture 2 Books Recommended:
Wolfgang Panofsky, SLAC director
Chapter V Interacting Fields Lecture 1 Books Recommended:
Elastic Scattering in Electromagnetism
Scattering Cross Sections (light projectile off heavy target)
Section VI - Weak Interactions
Lecture 5: QED The Bohr Magneton Off-Shell Electrons
Announcements Exam Details: Today: Problems 6.6, 6.7
Overview The Structure of the Proton Quark-Parton Model lecture-1
Nuclear Physics Lectures
The World Particle content.
Scattering in QM Consider a beam of particles scattering in potential V(r): NOTE: natural units The scattering rate is characterized by the interaction.
Chapter V Interacting Fields Lecture 7 Books Recommended:
Adnan Bashir, UMSNH, Mexico
Nuclear Decays Unstable nuclei can change N,Z.A to a nuclei at a lower energy (mass) If there is a mass difference such that energy is released, pretty.
Lecture 2: Invariants, cross-section, Feynman diagrams
Kinematics 2: CM energy and Momentum
Handout 4 : Electron-Positron Annihilation
It means anything not quadratic in fields and derivatives.
Determination of Higgs branching ratio into
Introduction to particle physics Part V
QCD at very high density
Halzen & Martin Chapter 4
Physics 214 UCSD Physics 225a UCSB Experimental Particle Physics
PHYS 3446 – Lecture #4 Monday, Sept. 11, 2006 Dr. Jae Yu
Examples of QED Processes
Presentation transcript:

Introduction to particle physics Part IV Physics 129, Fall 2010; Prof. D. Budker Introduction to particle physics Part IV

Bubble chamber Great topics for oral presenantion! The Gargamelle at CERN: discovered weak neutral currents in 1973 Professor Donald A. Glaser Great topics for oral presenantion! Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

How particles decay Decay probability goes as dt : Particles do not age! Board work: Mean Lifetime = 1/ Branching Ratios Partial decay rates add Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Cross Sections Effective area Inclusive vs. exclusive Elastic vs. inelastic (different reactions are called channels) Resonances Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Cross Sections Effective area Differential cross section Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Cross Sections Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Cross Sections Some cross-sections diverge (e.g., for Rutherford scattering) Effective cut-off Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Cross Sections Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Mandelstam Variables Universally used! Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Units of cross section Origin: Uranium nucleus 10-24 cm2 --- as "big as a barn" Unit Symbol m2 cm2 megabarn Mb 10−22 10−18 barn b 10−28 10−24 millibarn mb 10−31 10−27 microbarn (or "outhouse"[3]) μb 10−34 10−30 nanobarn nb 10−37 10−33 picobarn pb 10−40 10−36 femtobarn fb 10−43 10−39 attobarn ab 10−46 10−42 shed[4][5] (10−24 barn) [none] 10−52 10−48 Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Cross Sections Luminosity: number of particles in a beam per unit area per unit time Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Luminosity What about colliding beams? Luminosity = collision frequency  n1  n2 / beam area Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Luminosity Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

LHC luminosity: reality check Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

The Fermi Golden Rule mi – mass of ith particle pi – 4-momentum of ith particle S – statistical factor accounting for identical particles M – amplitude (p1, …. , pn) Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

The Fermi Golden Rule Kinematic constraints: All outgoing particles are on the mass shell All outgoing particles have positive energy Energy & momentum conservation Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

The Fermi Golden Rule 2π rules: Every δ gets a 2π Every d gets a 1/(2π) Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

The Fermi Golden Rule With the kinematic constraints, the G.R. simplifies to: For two-body decay: Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

The Feynman-Diagram Rules Goal: figure out amplitude M Draw all possible diagrams for the process The amplitudes from different diagrams add Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

The Feynman-Diagram Rules For each diagram: Label external momenta pi , label internal momenta qi, draw arrows (arbitrary for internal lines) For each vertex, write coupling constant Each internal line  propagator: For each vertex: energy/momentum conservation: (minus for outgoing lines) Add for each internal line; integrate Erase the resulting ; multiply by The result is M ; examples in Ch. 6 of Griffiths Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Higher-order diagrams Problem: loop integrals (logarithmically) diverge at large q This is not because the diagrams are bad! Regularization: introduce a heavy particle  cut-off (p. 219) Renormalization; running coupling constants…. Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Example/interlude: Diagrams in Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Example/interlude: Diagrams in Vanishes for Vanishes in the high-frequency limit Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Relativistic Equations Nonrelativistic Relativistic; spin zero Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

The Dirac Equation (relativistic, spin ½) Introduce 44 Dirac Matrices: Relativistic; spin 1/2 Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Solving the Dirac Equation Assume wavefunction independent of position: Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Solving the Dirac Equation Four independent solutions: The Dirac Sea Plane wave solutions (Sec. 7.2) Electron  Electron  Positron  Positron  Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Dirac Spinor Algebra Some useful facts about spinors: How do Dirac spinors transform under P? Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Dirac Spinor Algebra Introduce another matrix: What about 4 ? Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Bilinear Covariants Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Physics 129, Fall 2010, Prof. D. Budker; http://budker. berkeley