The Grand Unified Theory of Quantum Metrology

Slides:



Advertisements
Similar presentations
1 Taoufik AMRI. Overview 3 Chapter II Quantum Protocols Chapter III Quantum States and Propositions Chapter VI Detector of « Schrödingers Cat » States.
Advertisements

Beyond The Standard Quantum Limit B. W. Barr Institute for Gravitational Research University of Glasgow.
APRIL 2010 AARHUS UNIVERSITY Simulation of probed quantum many body systems.
Quantum-limited measurements: One physicist’s crooked path from quantum optics to quantum information I.Introduction II.Squeezed states and optical interferometry.
Quantum dynamics and quantum control of spins in diamond Viatcheslav Dobrovitski Ames Laboratory US DOE, Iowa State University Works done in collaboration.
From Gravitational Wave Detectors to Completely Positive Maps and Back R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1, M. Guta.
Experimental quantum estimation using NMR Diogo de Oliveira Soares Pinto Instituto de Física de São Carlos Universidade de São Paulo
Quantum limits in optical interferometry R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1, M. Guta 2, K. Macieszczak 1,2, R. Schnabel.
Q UANTUM M ETROLOGY IN R EALISTIC S CENARIOS Janek Kolodynski Faculty of Physics, University of Warsaw, Poland PART I – Q UANTUM M ETROLOGY WITH U NCORRELATED.
Displaced-photon counting for coherent optical communication Shuro Izumi.
Quantum enhanced metrology R. Demkowicz-Dobrzański 1, K. Banaszek 1, U. Dorner 2, I. A. Walmsley 2, W. Wasilewski 1, B. Smith 2, J. Lundeen 2, M. Kacprowicz.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Solid state realisation of Werner quantum states via Kondo spins Ross McKenzie Sam Young Cho Reference: S.Y. Cho and R.H.M, Phys. Rev. A 73, (2006)
Complexity and Disorder at Ultra-Low Temperatures 30th Annual Conference of LANL Center for Nonlinear Studies SantaFe, 2010 June 25 Quantum metrology:
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Schrödinger’s Elephants & Quantum Slide Rules A.M. Zagoskin (FRS RIKEN & UBC) S. Savel’ev (FRS RIKEN & Loughborough U.) F. Nori (FRS RIKEN & U. of Michigan)
A quantum optical beam n Classically an optical beam can have well defined amplitude AND phase simultaneously. n Quantum mechanics however imposes an uncertainty.
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
QUEST - Centre for Quantum Engineering and Space-Time Research Single mode squeezing for Interferometry beyond shot noise Bernd Lücke J. Peise, M. Scherer,
R. Demkowicz-Dobrzański 1, J. Kołodyński 1, M. Guta 2 1 Faculty of Physics, Warsaw University, Poland 2 School of Mathematical Sciences, University of.
Dynamical decoupling in solids
Quantum metrology: dynamics vs. entang lement I.Introduction II.Ramsey interferometry and cat states III.Quantum and classical resources IV.Quantum information.
Purdue University Spring 2014 Prof. Yong P. Chen Lecture 5 (2/3/2014) Slide Introduction to Quantum Optics &
Towards a Universal Count of Resources Used in a General Measurement Saikat Ghosh Department of Physics IIT- Kanpur.
Wave Packet Echo in Optical Lattice and Decoherence Time Chao Zhuang U(t) Aug. 15, 2006 CQISC2006 University of Toronto.
Coherence and Decoherence on fundamental sensitivity limits of quantum probes in metrology and computation R. Demkowicz-Dobrzański 1, K. Banaszek 1, J.
R. Demkowicz-Dobrzański 1, J. Kołodyński 1, K. Banaszek 1, M. Jarzyna 1, M. Guta 2 1 Faculty of Physics, Warsaw University, Poland 2 School of Mathematical.
School of something FACULTY OF OTHER School of Physics and Astronomy FACULTY OF MATHEMATICAL AND PHYSICAL SCIENCES Putting entanglement to work: Super-dense.
LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) Laboratoire Kastler Brossel A. Dantan, E. Giacobino, M. Pinard.
Copenhagen interpretation Entanglement - qubits 2 quantum coins 2 spins ( spin “up” or spin “down”) Entangled state many qubits: Entangled state:
Quantum Entanglement and Distillation in Information Processing Shao-Ming Fei
CENTER FOR EXOTIC QUANTUM SYSTEMS CEQS Preskill 1983 Kitaev 2002 Refael 2005 Motrunich 2006 Fisher 2009 Historically, Caltech physics has focused on the.
Quantum computation speed-up limits from quantum metrological precision bounds R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1,
Using entanglement against noise in quantum metrology
From Quantum metrological precision bounds to Quantum computation speed-up limits R. Demkowicz-Dobrzański 1, J. Kołodyński 1, M. Jarzyna 1, K. Banaszek.
Quantum metrology: dynamics vs. entanglement
Sense and sensitivity:,,robust’’ quantum phase estimation R. Demkowicz-Dobrzański 1, K. Banaszek 1, U. Dorner 2, I. A. Walmsley 2, W. Wasilewski 1, B.
From Quantum metrological precision bounds to Quantum computation speed-up limits R. Demkowicz-Dobrzański, M. Markiewicz Faculty of Physics, University.
Metrology and integrated optics Geoff Pryde Griffith University.
MICRA: status report Exploration of atom-surface forces on a micrometric scale via high sensitivity force measurements with ultracold quantum gases. Objectives:
Atomic Clocks Niles Bohr Institute PhD Student: Johannes Borregaard
Role of entanglement in extracting information on quantum processes
Tunable excitons in gated graphene systems
Sub-Planck Structure and Weak Measurement
Detuned Twin-Signal-Recycling
Improving Measurement Precision with Weak Measurements
Matrix Product States in Quantum Metrology
Quantum-limited measurements:
Using Quantum Means to Understand and Estimate Relativistic Effects
Fundamental bounds on stability of atomic clocks
M. Stobińska1, F. Töppel2, P. Sekatski3,
the illusion of the Heisenberg scaling
Detector of “Schrödinger’s Cat” States of Light
Quantum-limited measurements:
ICNFP, Kolymbari, Crete, Greece August 28 – September 5, 2013
Quantum Engineering & Control
Classical Mechanics PHYS 2006 Tim Freegarde.
Ultraprecise Clock Synchromnization Via Distant Entanglement
Novel quantum states in spin-orbit coupled quantum gases
Quantum entanglement measures and detection
Part II New challenges in quantum many-body theory:
The Grand Unified Theory of Quantum Metrology
Quantum optics as a tool for visualizing fundamental phenomena
Quantum computation using two component Bose-Einstein condensates
Advanced Optical Sensing
INTERNATIONAL CONFERENCE ON QUANTUM INFORMATION
Department of Physics, Fudan University, Shanghai , China
Jaynes-Cummings Hamiltonian
Presentation transcript:

The Grand Unified Theory of Quantum Metrology Cold atom magnetometers GUT NV sensors Optical interferometers using non-classical light Atomic inertial sensors Atomic clocks Rafal Demkowicz-Dobrzański Faculty of Physics, University of Warsaw, Poland

Optical interferometry NV center magnetometers Quantum Metrology under relevant physical constraints make the most of quantum coherence (and entanglement) to boost measurement precision Optical interferometry Atomic clocks NV center magnetometers Coherence „classical” light uncorrelated/single atoms electron spin only Entanglement squeezed light entangled atoms electron spin entangled with nuclear spins Decoherence photon loss LO fluctuations, atom dephasing, loss spin dephasing 1.

Quantum metrology as a quantum channel estimation problem

Quantum Cramer-Rao bound Classical Cramer-Rao inequality Quantum Cramer-Rao inequality Quantum Fisher information Time-Energy uncertainty relation

Phase estimation with N uses of a channel Uncorrelated scheme Entanglement-enhanced scheme Maximize Quantum Fisher Information over input states

The most general adaptive scheme No improvement thanks to adaptiveness! V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 96, 010401 (2006).

Noiseless frequency estimation Estimate frequency, for total interrogation time T

Impact of decoherence… loss dephasing

Impact of decoherence…

Quantum Fisher Information for mixed states difficult to analyze…. may sometimes be helpful in deriving bounds…

Precision bounds via minimization over equivalent Kraus representations single channel optimization! A. Fujiwara, H. Imai, J. Phys. A 41, 255304 (2008) B. M. Escher, R. L. de Matos Filho, L. Davidovich Nature Phys. 7, 406–411 (2011) RDD, J. Kolodynski, M. Guta, Nat. Commun. 3, 1063 (2012) RDD, L. Maccone Phys. Rev. Lett. 113, 250801 (2014) [Adaptive schemes included]

Adaptive frequency estimation Maximize Quantum Fisher Information under fixed total interrogation time T ?

General frequency estimation problem under Markovian noise Maximize Quantum Fisher Information under fixed total interrogation time T ?

Frequency estimation bounds directly from the quantum Master equation Without loss of generality we may always consider limit t->0….. Expand  and  in t…

Frequency estimation bounds directly from the quantum Master equation Quantitative bound: Can be solved by semi-definite programming: RDD, J. Czajkowski, P. Sekatski,, Phys. Rev. X 7, 041009 (2017)

Heisenberg scaling is typically lost Single photon modeled as a three level system: Fundamental bound can be asymptotically reached with simple schemes involving weakly squeezed states!

GEO600 interferometer at the fundamental quantum bound The most general quantum strategies could additionally improve the precision by at most 8% coherent light +10dB squeezed fundamental bound RDD, K. Banaszek, R. Schnabel, Phys. Rev. A, 041802(R) (2013)

Recovering the Heisenberg scaling via Quantum Error Correction - Example Perpendicular dephasing: Simple quantum error correction scheme leads to G. Arad et al Phys. Rev. Lett 112, 150801 (2014) E. Kessler et.al Phys. Rev. Lett. 112, 150802 (2014) W. Dür, et al., Phys. Rev. Lett. 112, 080801 (2014) P. Sekatski, M. Skotiniotis, J. Kolodynski, W. Dur, Quantum 1, 27 (2017)

Recovering the Heisenberg scaling via Quantum Error Correction - General can be improved with semi-definite programming algorithm S. Zhou, M. Zhang, J. Preskill, and L. Jiang, Nat. Commun. 9, 78 (2018)

Application to quantum merology with many-body interractions k-body Hamiltonian l-body decoherence

Application to quantum merology with many-body interractions RDD, J. Czajkowski, P. Sekatski,, Phys. Rev. X 7, 041009 (2017)

Beyond uncorrelated noise models Temporarily correlated noise Atomic clocks – the Quantum Allan Variance K. Macieszczak, M. Fraas, RDD, New J. Phys. 16, 113002 (2014) K. Chabuda, I. Leroux, RDD, New J. Phys. 18, 083035 (2016) Spatiall correlated noise Locally corrleated input states + Locally correlated noise models = Matrix Product Operator Formalism M. Jarzyna, RDD, Phys. Rev. Lett. 110, 240405 (2013) K.Chabuda, J. Dziarmaga, T. Osborne, RDD, in preparation

Take home message RDD, J. Czajkowski, P. Sekatski,, Phys. Rev. X 7, 041009 (2017) S. Zhou, M. Zhang, J. Preskill, and L. Jiang, Nat. Commun. 9, 78 (2018)

Rotation vs Adiabatic scenarios adiabatic change ground state dimensionality critical exponent time to equilibrate? energy gap scaling exponent M. Rams, P. Sierant, O. Dutta, P. Horodecki, J. ZakrzewskiPhys. Rev. X 8, 021022 (2018)