Probing New Physics with Neutral Current Measurements

Slides:



Advertisements
Similar presentations
1 The and -Z Exchange Corrections to Parity Violating Elastic Scattering 周海清 / 东南大学物理系 based on PRL99,262001(2007) in collaboration with C.W.Kao, S.N.Yang.
Advertisements

Peter Schleper, Hamburg University SUSY07 Non-SUSY Searches at HERA 1 Non-SUSY Searches at HERA Peter Schleper Hamburg University SUSY07 July 27, 2007.
IV. Low Energy Probes of SUSY J Erler (UNAM) A Kurylov (Caltech) C Lee (Caltech) S Su (Arizona) P Vogel (Caltech) G Prezeau (Caltech) V Cirigliano (Caltech)
SUSY can affect scattering Parity-Violating electron scattering “Weak Charge” ~ sin 2  W ~ 0.1.
TeV scale see-saws from higher than d=5 effective operators Neutrino masses and Lepton flavor violation at the LHC Würzburg, Germany November 25, 2009.
P. Langacker ICHEP2004 (8/16/04) Low Energy Electroweak Precision Tests Perspective –Motivations –Precision program WNC experiments Universality EDMs,
PVDIS at 11 GeV with SoLID. PV Electron Scattering 2 (g A e g V T +  g V e g A T ) to g V is a function of sin 2  W Parity-violating electron scattering.
Yingchuan Li Weak Mixing Angle and EIC INT Workshop on Pertubative and Non-Pertubative Aspects of QCD at Collider Energies Sep. 17th 2010.
Hunting for New Particles & Forces. Example: Two particles produced Animations: QPJava-22.html u u d u d u.
K. Kumar, W. Marciano, Y. Li Electroweak physics at EIC - Summary of week 7 INT Workshop on Pertubative and Non-Pertubative Aspects of QCD at Collider.
Cultural Interlude Emlyn Hughes Caltech DOE HEP Review July 21, 2004 Final Results from SLAC Experiment E158 “Measurement of the Electroweak Mixing Angle”
Parity Violation in Electron Scattering Emlyn Hughes SLAC DOE Review June 2, 2004 *SLAC E122 *SLAC E158 *FUTURE.
Electric Dipole Moment Goals and “New Physics” William J. Marciano 12/7/09 d p with e-cm sensitivity! Why is it important?
ICHEP04 Beijing Global Electroweak fits and constraints on the Higgs mass Pete Renton Aug 2004 GLOBAL ELECTROWEAK FITS AND CONSTRAINTS ON THE HIGGS MASS.
Search for R-parity violating Supersymmetric effects in the neutron beta decay N. Yamanaka (Osaka University) 2009 年 8 月 12 日 at KEK In collaboration with.
One-loop analysis of the 4-Femi contribution to the Atomic EDM within R-parity violating MSSM N. YAMANAKA (Osaka University) 2010/8/9 Sigma Hall Osaka.
Electroweak Physics at an EIC: Theory Prospects M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical.
Precision Electroweak Physics and QCD at an EIC M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical.
Looking Through The Mirror: Parity Violation in the Future M.J. Ramsey-Musolf + many students, post- docs, collaborators, and colleagues.
A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago Argonne National Laboratory Office of Science U.S. Department.
Introduction to Flavor Physics in and beyond the Standard Model
Test Z’ Model in Annihilation Type Radiative B Decays Ying Li Yonsei University, Korea Yantai University, China Based on J. Hua, C.S Kim, Y. Li, arxiv:
Particle Physics Chris Parkes Experimental QCD Kinematics Deep Inelastic Scattering Structure Functions Observation of Partons Scaling Violations Jets.
Constraints on the Scale of New Physics Phenomena from the Combined LEP II  f f and γγ Measurements Dimitri Bourilkov University of Florida for the LEP.
Electroweak Physics at an Electron-Ion Collider M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical.
Xiaochao Zheng, International Workshop on Positrons at JLab 1/64 C 3q Measurement Using Polarized e + /e - Beams at JLab – Introduction — Standard Model.
1 Electroweak Physics Lecture 5. 2 Contents Top quark mass measurements at Tevatron Electroweak Measurements at low energy: –Neutral Currents at low momentum.
PV DIS: SUSY and Higher Twist M.J. Ramsey-Musolf Caltech Wisconsin-Madison S. Mantry, K. Lee, G. Sacco Caltech.
Chung-Wen Kao Chung-Yuan Christian University, Taiwan
7 April, 2005SymmetriesTests in Nuclear Physics Symmetry Tests in Nuclear Physics Krishna Kumar University of Massachusetts Editorial Board: Parity Violation:
Yingchuan Li Electroweak physics at EIC Brookhaven National Lab Feb. 3rd 2011, BNL.
1 Prospect after discoveries of Higgs/SUSY Yasuhiro Okada (KEK) “Discoveries of Higgs and Supersymmetry to Pioneer Particle Physics in the 21 st Century”
Sally Dawson, BNL Standard Model and Higgs Physics FNAL LHC School, 2006 Introduction to the Standard Model  Review of the SU(2) x U(1) Electroweak theory.
Electroweak Physics At The EIC (Electron-Ion Collider) William J. Marciano (May 17, 2010) 1. WEAK NC PARITY VIOLATION i) APV vs Pol Electron Scattering.
Parity Violation: Past, Present, and Future M.J. Ramsey-Musolf.
EINN05, Milos 21 September, 2005 David LHUILLIER – CEA Saclay Electroweak Hadron Physics.
DIS-Parity: Measuring sin 2 θ W with Parity Violation in Deep Inelastic Scattering using Baseline Spectrometers at JLab 12 GeV Paul E. Reimer.
Marc Vanderhaeghen 1 Introduction LEPP16 Marc Vanderhaeghen LEPP16 Workshop Kupferberg, Mainz, April 4-7, 2016 New Vistas in Low-Energy Precision Physics.
In the SM to the first order x: variable relevant to the nucleon internal structure Q 2 : Four-momentum transfer squared between the electron and the target.
PV Electron Scattering
David B. MacFarlane SLAC EPAC Meeting January 25, 2006
Flavour Physics in and beyond the Standard Model
Symmetries in Nuclear Physics
Parity Violation in eP Scattering at JLab
Weak probe of the nucleon in electron scattering
Physics Overview Yasuhiro Okada (KEK)
Section VI - Weak Interactions
Search for New Physics beyond the SM
Exploring the Standard Model with JLab at 12 GeV
Precision Probes for Physics Beyond the Standard Model
Cosmology study at CEPC/SppC on behalf of the TeV cosmology working group Bi Xiao-Jun (IHEP)
Probing Supersymmetry with Neutral Current Scattering Experiments
The Moeller PV Experiment: the ultimate scattering sector determination of the weak mixing angle at low energies Dave Mack (TJNAF) Workshop on Hadronic.
Finish off Higgs reach at Tevatron and CMS
Electroweak Physics at the EIC
Deep Inelastic Parity Robert Michaels, JLab Electroweak Physics
Searching for SUSY in B Decays
EW precision tests before the LHC
Thomas Jefferson National Accelerator Facility
Shufang Su • U. of Arizona
Physics Overview Yasuhiro Okada (KEK)
Searching for New Physics in muon lepton flavor violating processes
PVDIS June 2, 2011 PVDIS overview.
Lepton Flavor Violation
Analysis of enhanced effects in MSSM from the GUT scale
Physics Overview Yasuhiro Okada (KEK)
Hints for Low Supersymmetry Scale from Analysis of Running Couplings
Parity – Violating Neutron Density Measurements : PREX, C-REX
Measurement of Parity-Violation in the N→△ Transition During Qweak
Prospect after discoveries of Higgs/SUSY
Presentation transcript:

Probing New Physics with Neutral Current Measurements Shufang Su • U. of Arizona

Outline Precision measurements vs. direct detection - Precision measurements vs. direct detection Neutral current measurements parity violating electron scattering ee Moller scattering (SLAC E158) ep elastic scattering (Jlab Qweak) atomic parity violation (APV) neutrino-nucleus deep inelastic scattering (NuTeV) - proble new physics beyond SM - some QCD issue - future experiments Conclusion S. Su subZ2004

Precision measurements vs. direct detection - mt=178.0  4.3 GeV (direct) (indirect) Direct vs. indirect detection provide complementary information success of SM consistency check of any new physics scenario LEP EWWG LEP EWWG 2004 winter S. Su subZ2004

Low energy precision measurements address questions difficult to study at high energy weak interactions (parity violation) high precision low energy experiment available - muon g-2: M=m , new  2x10-9, exp < 10-9 -decay, -decay: M=mW , new  10-3, exp  10-3 parity-violating electron scattering: M=mW , new  10-3, 1/QWe,p 10 more sensitive to new physics need exp  10-2 “easier” experiment - size of loop effects from new physics: (/)(M/Mnew)2 QWe,p  1-4 sin2W  0.1 probe new physics off the Z-resonance - sensitive to new physics not mix with Z S. Su subZ2004

Neutral Current: Test of sin2W running - Weak mixing angle sinW courtesy of Erler and Carlini MS g sinW = g’ cosW = e Norval Fortson:APV Bob McKeown: ee (E158) Shelley Page: ep (Qweak) Kevin McFarland: (NuTeV) In addition Janet Conrad (Friday): reactor based -e- scattering Talk in neutral current session - sin2W(0) - sin2W(mZ2) = +0.007 - QWCs: agree Q2=0 E158 Runs I+II (Preliminary) NuTeV APV(Cs) - NuTeV: +3 Q2=20 (GeV)2 Weak mixing angle sin2W parity-violating electron scattering (PVES) Q2=0.03 (GeV)2 - ee Moller scattering (SLAC) QWe - ep elastic scattering (J-lab) QWp Anticipated final errors ee E158 ep Qweak  sin2W  0.0007 scale Q (GeV) S. Su subZ2004

NC exp as a indirect probe of new physics - SM is a low energy approximation of a more fundamental theory NC exp:  consistency check of SM  complementary to direct new physics searches  distinguish various new physics SUSY: minimal Supersymmetric extension of SM (MSSM) each SM particle superpartner - with R-parity : loop corrections - without R-parity: tree-level contribution extra Z’ - exists in extension of SM - constraints from Z-pole observable (mix with Z) leptoquark extra-dimension … spin differ by ½ S. Su subZ2004

PVES:E158 and Qweak A N+-N- ALR  QWf N++N- V geA = Ie3 weak charge QWf = 2gfV = 2 If3 -4Qfs2 ep Qweak exp QWp ee Moller exp QWe QWe,p tree 1-4s2 -(1-4s2) QWe,p loop 0.0721 -0.0449 exp precision 4% 9%  sin2W 0.0007 0.0010 SM running 10  8  clean environment: Hydrogen target theoretically clean: small hadronic uncertainties tree level  0.1  sensitive to new physics QWCs :  sin2W = 0.0021 NuTeV:  sin2W = 0.0016 S. Su subZ2004

Sensitivity to new physics scale - Ramsey-Musolf(1999) O(1) : new physics scale Take  QWp=4% courtesy of Carlini Non-perturbative theory g » 2   » 29 TeV Extra Z’ (GUT) g » 0.45 mZ’ » 2.1 TeV probe new physics scale comparable to LHC confirmation of LHC discovery (couplings, charges) S. Su subZ2004

MSSM correction to weak charge - QWf =  (2Tf3 - 4Qf  s2) + f Kurylov, Ramsey-Musolf, Su (2003) QWe and QWp correlated dominant :  (<0)  negative shift in sin2W MSSM  (QWp)SUSY / (QWp)SM < 4%,  (QWe)SUSY / (QWe)SM < 8% S. Su subZ2004

R-parity violating (RPV) RPV operators contribute to QWe,p at tree level Kurylov, Ramsey-Musolf, Su (2003) Exp constraints  decay: |Vud| = -0.00145  0.0007 APV(Cs):  QWCs = -0.0040  0.0066 Re/ :  Re/ = -0.0042  0.0033 G:  G = 0.00025  0.00188 RPV 95% CL MSSM loop QpW No SUSY dark matter I) Obtain 95% CL allowed region in RPV coefficients II) Evaluate  QWe and  QWp G S. Su subZ2004

Correlation between QWp , QWe - Distinguish new physics Erler, Kurylov and Ramsey-Musolf (2003) exp MSSM: extra Z’: RPV SUSY leptoquark  QWp  QWe SM  0.0029  0.0040 Distinguish via APV QWCs Combinations of NC exps could be used to distinguish various new physics S. Su subZ2004

? Extract QWp use kinematics to simplify: at forward angle  - use kinematics to simplify: at forward angle  ? Musolf et. al., (1994) measure F(,q2) over finite range in q2, extrapolate F to small q2 existing PVES: SAMPLE, HAPPEX, G0, A4 minimize effect of F by making q2 small q2  0.03 GeV2, still enough statistics   QpW / QpW | hadronic effects  2 % S. Su subZ2004

QCD correction to ep scattering - Box diagram contribution to QWP Erler, Kurylov and Ramsey-Musolf (2003) e p Z  e p W e p Z e p Z  suppression non-calculable Similar to nuclear -decay e e- n p  W  QWP 26% 3% 6% kloop » O(mW) kloop » O(mZ) QCD  kloop  O(mZ) |CW|  2 (CKM unitarity) |CZ|  2 non-perturbative using OPE (pQCD)  QWP (QCD) -0.7% -0.08% 0.65% Total theoretical uncertainty » 0.8% S. Su subZ2004

Outlook: PV electron scattering - Kurylov, Ramsey-Musolf, Su (2003) MSSM RPV Erler NuTeV Linear Collider e-e- sin2W DIS-Parity,JLab DIS-Parity, SLAC APV e+e- LEP, SLD SLAC E158 (ee) JLab Moller (ee) JLab QWeak (ep) Q (GeV) S. Su subZ2004

Atomic parity violation - Two approaches rotation of polarization plane of linearly polarized light apply external E field  parity forbidden atomic transition Boulder group: cesium APV 0.35% exp uncertainty wood et. Al. (1997) QW(Z,N)=(2Z+N)QWu+(Z+2N)QWd ¼ Z(1-4 sin2W)-N ¼ -N finite nuclear size nucleon substructure nuclear spin-dependent term  »  0.15% Pollock and Wieman (2001) Musolf (1994) Erler, Kurylov and Ramsey-Musolf (2003) atomic structure 1% Blundell et. al. (1990, 1992) Dzuba et. Al. (1989) reduced error 0.6% (exp + theory) via transit dipole amplitude measurement Bennett and Wieman (1999) + 2.5  deviation (2002) Breit interaction  Derevianko (2000), Dzuba et. al. (2001) Uehling potential  Johnson et. al. (2001), Milstein et. al. (2002) QED self-energy and vertex  Dzuba et. Al. (2002), Kuchiev and Flambaum (2002), Milstein et. al. (2002) QWCs (exp) = -72.69  0.48 QWCs(SM)=-73.16 agree S. Su subZ2004

Sensitivity to new physics - Distinguish new physics  QW (Z,N)=(2Z+N)  QWu +(2N+Z)  QWd  QWu >0  QWd <0   QW(Z,N) / QW(Z,N) < 0.2 % for Cs MSSM exp MSSM: extra Z’:  QWp  QWe  QWCs small sizable SM  0.0029  0.0040 Erler, Kurylov and Ramsey-Musolf (2003) S. Su subZ2004

Outlook -- APV Paris group: more precise Cs APV Seattle group: Ba+ APV 6S1/2  5D3/2 Berkeley group: isotope Yb APV eliminate large atomic structure theory uncertainties 0.2% uncertainties comparable to QWp in sensitivity to new physics Ramsey-Musolf(1999) S. Su subZ2004

NuTeV experiment NC CC gL,R2=(uL,R)2+(dL,R)2 - NC CC gL,R2=(uL,R)2+(dL,R)2 R=-0.0033  0.0015 R=-0.0019  0.0026 - exp fit: (gLeff)2=0.30050.0014, (gReff)2=0.03100.0011 SM EW fit: (gLeff)2=0.3042, (gReff)2=0.0301 S. Su subZ2004

NuTeV anomaly … exp fit (=1): sin2Won-shell = 0.2277  0.0016 SM fit to Z-pole: sin2Won-shell = 0.2227  0.00037 (3  away) To explain NuTeV anomaly nuclear shadowing Miller and Thomas (2002), Zeller et. Al. (2002), Kovalenkov, schmidt and Yang (2002) asymmetry in strange sea distribution Davidson, Forte, Gambino, Rius and Strumia (2002), Goncharov et. al. (2001) isospin symmetry breaking Bodek et. al. (1999), Zeller et. Al. (2002) QCD corrections Dobrescu and Ellis (2003), Kretzer et. al. (2003), Davidson et. al. (2002) … S. Su subZ2004

New physics explanation - Difficult ! Supersymmetry:  R,   0 Kurylov, Ramsey-Musolf, Su (2003), Davidson, Forte, Gambino, Rius and Strumia (2002) Extra Z’ : family non-universal, finetuning Langacker and Plumacher (2000) Leptoquark: tune mass splitting Davidson, Forte, Gambino, Rius and Strumia (2002)  mixing with extra heavy neutrino: constraints from other observables Babu and Pati (2002), Loinaz et. al. (2003) - MSSM RPV reactor based -e- scattering  sin2W Conrad, Link and Shaevitz (2004) (Janet Conrad, Friday) - S. Su subZ2004

Conclusion NC exp: precision measurements of sin2W at low energy - NC exp: precision measurements of sin2W at low energy - PV ee, ep scattering (E158, Qweak) - APV measurements - NuTeV consistency check of SM sensitive to new physics complementary to direct searches combinations of several NC exp  distinguish various new physics uncertainties caused by QCD - extract from experimental measurements - SM predictions S. Su subZ2004

Talks in this workshop Talk in neutral current session - Norval Fortson:APV Bob McKeown: ee (E158) Shelley Page: ep (Qweak) Kevin McFarland: (NuTeV) In addition Janet Conrad (Friday): reactor based -e- scattering Talk in neutral current session - S. Su subZ2004