Basic current mirror Small signal: Rin = 1/(gm1+gds1)  1/gm1

Slides:



Advertisements
Similar presentations
Differential Amplifiers
Advertisements

DIFFERENTIAL AMPLIFIERS. DIFFERENTIAL AMPLIFIER 1.VERY HIGH INPUT IMPEDENCE 2.VERY HIGH BANDWIDTH 3.DIFFERENTIAL INPUT 4.DC DIFFERENTIAL INPUT ACCEPTED.
Operational Amplifier (2)
1 EE 501 Fall 2009 Design Project 1 Fully differential multi-stage CMOS Op Amp with Common Mode Feedback and Compensation for high GB.
2. CMOS Op-amp설계 (1).
Lesson 3: Operational Amplifier Circuits in Analog Control
UNIT -V IC MOSFET Amplifiers.
Basic Block Diagram of Op-Amp
Common Base and Common Collector Amplifiers
FET Amplifier Circuits Analysis
Recall Lecture 17 MOSFET DC Analysis
HW#10 will be posted tonight
COMMON-GATE AMPLIFIER
ANALOGUE ELECTRONICS I
BJT transistors.
Recall Lecture 17 MOSFET DC Analysis
Lecture 13 High-Gain Differential Amplifier Design
741 Op-Amp Where we are going:.
Analog Integrated Circuits Laboratory
Design: architecture selection plus biasing/sizing
Recall Lecture 17 MOSFET DC Analysis
Voltage doubler for gate overdrive
VDD M3 M1 Vbb Vin CL Rb Vo VDD Vo Vb3
CASCODE AMPLIFIER.
CMOS Devices PN junctions and diodes NMOS and PMOS transistors
Fully differential op amps
HKN ECE 342 Review Session 2 Anthony Li Milan Shah.
Operational Amplifier Design
Last time Small signal DC analysis Goal: Mainly use CS as example
Last time Large signal DC analysis Current mirror example
More DAC architectures
DAC architectures.
vs vb cc VDD VDD VDD M9 M12 M11 vo Iref M1 M2 vin vin+= voQ CL vf=vin
Common-Base Amplifier
741 Op-Amp Where we are going:.
OpAmp (OTA) Design The design process involves two distinct activities: Architecture Design Find an architecture already available and adapt it to present.
M2 M1 Vbb Vin CL M4 M3 Vyy Vxx VDD VDD Vo<Vxx+|Vt3| flip up-down
Input common mode range drop
HW#10 will be posted tonight
cc cc vbp vbp vbn VDD VDD VDD VDD VDD M16 M4 M3 M4 M13 Rbp vo+ CL vo-
M2 M1 Vbb Vin CL M4 M3 Vyy Vxx VDD VDD Vo<Vxx+|Vt3| flip up-down
VDD VDD Vo<VG6+|Vt6| =VDD - |Vtp| - 2Veff M7 M5 M8 M6 vo
For a differential amplifer: vin+=vic+vid/2, vin-=vic-vid/2
Lecture 13 High-Gain Differential Amplifier Design
vs vin- vin+ vbp vbn vbn vbb vbb VDD VDD M9 M12 M1 M2 v- v+ Iref M3 M4
Last time Reviewed 4 devices in CMOS Transistors: main device
Miller equivalent circuit
Common mode feedback for fully differential amplifiers
DAC architectures.
M2 M1 Vbb Vin CL M4 M3 Vyy Vxx VDD VDD Vo<Vxx+|Vt3| flip up-down
Recall Lecture 17 MOSFET DC Analysis
Last time Analysis vs Design General tasks for analysis
Single-Stage Amplifiers
B.Sc-II Paper-VI Chapter- Operational Amplifier.
Operational Amplifier (Op-Amp)-μA741
Types of Amplifiers Common source, input pairs, are transconductance
Input common mode range
VDD M2 M1 Vbb Vin CL RL Vo VDD Vo Vb2
Common mode feedback for fully differential amplifiers
Common source output stage:
Differential Amplifier
vs vb cc VDD VDD VDD M9 M12 M11 vo Iref M1 M2 vin vin+= voQ CL vf=vin
Folded cascode stage: summing current and convert to voltage
Rail-to-rail Input Stage
Differential Amplifier
VDD Vin+ CL Vin- Vb3 folded cascode amp Vb2 Vb1 Vb4 Vb5.
Current Sources Ever wonder how we make one of these?
Lecture 11 ANNOUNCEMENTS OUTLINE Review of BJT Amplifiers
Anthony Li Alec Wasowicz
Analysis of Single Stage Amplifiers
Presentation transcript:

Basic current mirror Small signal: Rin = 1/(gm1+gds1)  1/gm1 Chapter 3 Figure 01 Small signal: Rin = 1/(gm1+gds1)  1/gm1 Ai  gm2/gm1  W2/W1

Large signal: Iin = m1Cox1(W1/L1)(VGS1-Vt1)^2*(1+l1Vds1) = mCox(W1/L)(Vin-Vt)^2*(1+lVin) Iout = m2Cox2(W2/L2)(VGS2-Vt2)^2*(1+l2Vds2) = mCox(W2/L)(Vin-Vt)^2*(1+lVout) Iout/Iin = (W2/W1) *(1+lVout)/(1+lVin) So: need Vout=Vin to have accurate mirror ratio. Also: need Vout > Veff for the analysis to be valid.  Voutmin = Veff

D1 connects to S2 VDD Large signal: Want all T’s in saturation From ID1=IQ, estimate VG1Q by ignoring l-effect For M1 in sat, Vds1 > Veff1 From ID2=IQ, estimate VGS2Q Need VG2Q > VGS2Q+Veff1 For M2 in sat, Vds2 > Veff2 So, need Vo> VG2Q-Vt2 IQ M2 M1 Cascode

Small signal Assume all T’s in saturation Draw small signal circuit Compute small signal parameters Rin Ro Ai Av …

connecting S1 to D2 Source follower, or common drain amplifier. Read book for analysis. Av is less than but close to 1. Ro is small, so can drive resistive load. Commonly used as buffer

D1 connects to S2 VDD Large signal: same as cascode Small signal: IQ Ro same as cascode Rin = rds1||rincg rincg: be careful Av: Ai: IQ M2 M1 Common Gate amp

M2 M1 Vbb Vin CL M4 M3 Vyy Vxx VDD VDD Vo<Vxx+|Vt3| flip up-down for source Rb M2 Vbb CL M1 Vin connecting D1 to S2 cascoding Vo> Vbb-Vt2 ro = rop||ron, Av=-gm1*ro

VDD VDD flip left-right to get this differential telescopic cascoded amplifier M7 M5 Vyy Vxx Vo<Vxx+|Vt3| M8 M6 vo- vo+ CL M3 M4 Vbb CL M1 M2 vin+ vin- Vs Vo> Vbb-Vt2 Tail current to change gnd to virtual gnd

Let vin+ = Vic + ½ vid, vin- = Vic - ½ vid The cross source: Vs = Vic – VGS1Q. Left half circuit same as two slides back, but with vin = ½ vid. So vo- = - gm1ro-(½ vid), where ro- = ro5,7||ro1,3. Similarly, vo+ = - gm1ro+(-½ vid), where ro+ = ro6,8||ro2,4. Hence: vod = gm1rovid Av = vod/vid = gm1ro where ro = ro- = ro+

ICMR M3 M4 Vbb What is Vicmax? VD1 = Vbb-Vt3-Veff3 For M1 in saturation, need VD1>VG1Q–Vt1 =Vic–Vt1. So, Vic<Vbb-Vt3-Veff3+Vt1 Vicmax=Vbb-Veff3 What is Vicmin? Vs>Veff9 for M9 in saturation. Vic>Veff9+Veff1+Vt1 Vicmin=Veff9+Veff1+Vt1 M1 M2 vin+ vin- Is M1 M2 vin+ vin- M9

VDD VDD Diode connection to turn diff out to single-ended output  M7 M5 M8 Vo<VG6+|Vt6| M6 vo Same ICMR. But Vo range is different. VG6=VDD-2Vtp-2Veff M3 M4 CL Vbb M1 M2 vin+ vin- Vo>Vbb-Vt2 Same Av, ro

VDD VDD Vo Vo Folded cascode

VDD Vin CL Vbb flip up-down for I sources VDD M1 Vin CL M2 Vbb connecting n-D to p-S

VDD VDD folded cascode amp Vbb Vin+ Vin- CL

D1 connects to G2, two stages VDD VDD VDD VDD two stage CS amplifier CS amplifier with a source follower buffer

VDD VDD VDD V? Vx Vx Same as above, only T2 is pMOS Connecting S1 to D2 makes ro really small buffer or output stage