Galaxies.

Slides:



Advertisements
Similar presentations
The Universe of Galaxies. A Brief History Galileo.
Advertisements

Charles Hakes Fort Lewis College1. Charles Hakes Fort Lewis College2.
The Milky Way Galaxy part 2
Galaxies. First spiral nebulae found in 1845 by the Earl of Rosse. Speculated it was beyond our Galaxy "Great Debate" between Shapley and Curtis.
GALAXIES, GALAXIES, GALAXIES! A dime a dozen… just one of a 100,000,000,000! 1.Galaxy Classification Ellipticals Dwarf Ellipticals Spirals Barred Spirals.
GENS S1 and S2Galaxies1 Dr Michael Burton. GENS S1 and S2Galaxies2 The Structure of our Galaxy How did we find out? Herschel’s 18 th Century.
90% of Matter in Milky Way is Dark Matter Gives off no detectable radiation. Evidence is from rotation curve: Rotation Velocity (AU/yr) Solar System Rotation.
March 21, 2006Astronomy Chapter 27 The Evolution and Distribution of Galaxies What happens to galaxies over billions of years? How did galaxies form?
Galaxies. ● When we look at the night sky: – Moon and planets- relatively close ~ AU’s – Stars in the Milky Way and its halo, still close ~ kpc ~ 1000’s.
Galaxies With a touch of cosmology. Types of Galaxies Spiral Elliptical Irregular.
The Milky Way Galaxy. The Milky Way We see a band of faint light running around the entire sky. Galileo discovered it was composed of many stars. With.
A1143 Quiz 4 Distribution of Grades: No Curve. Milky Way: Bright Band Across Sky (Resolved by Galileo)
ASTR 113 – 003 Spring 2006 Lecture 10 April 5, 2006 Review (Ch4-5): the Foundation Galaxy (Ch 25-27) Cosmology (Ch28-29) Introduction To Modern Astronomy.
Chapter 24 Normal and Active Galaxies. The light we receive tonight from the most distant galaxies was emitted long before Earth existed.
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
Galaxies Chapter 16. Galaxies Star systems like our Milky Way Contain a few thousand to tens of billions of stars. Large variety of shapes and sizes.
Galaxies Chapter 13:. Galaxies Contain a few thousand to tens of billions of stars, Large variety of shapes and sizes Star systems like our Milky Way.
Chapter 24 Galaxies. 24.1Hubble’s Galaxy Classification 24.2The Distribution of Galaxies in Space 24.3Hubble’s Law 24.4Active Galactic Nuclei Relativistic.
Chapter 15 Galaxies What do you think? Do galaxies all have spiral arms? Are most of the stars in a spiral galaxy in its arms? Are galaxies isolated.
Galaxies Read Your Textbook: Foundations of Astronomy
NOTES: Characteristics of Galaxies Classification: The Hubble Tuning Fork Elliptical: E0--E7 Spheroids, E0 is spherical, E7 least spherical. Population.
The Expanding Universe
The Milky Way Appears as a band of light stretching across the sky There are dark regions along the band, giving the appearance of a lack of stars This.
Chapter 24 Galaxies. Beyond the Milky Way are billions of other galaxies Some galaxies are spiral like the Milky Way while others are egg-shaped / elliptical.
Galaxies.
Galaxies Chapter 16. Topics Types of galaxies Dark Matter Distances to galaxies Speed of galaxies Expansion of the universe and Hubble’s law.
Galaxies Please press “1” to test your transmitter.
Galaxies and More Galaxies! It is now believed that there are over 100 billion galaxies, each with an average of 100 billion stars… stars altogether!
1 Galaxies The Andromeda Galaxy - nearest galaxy similar to our own. Only 2 million light years away! Galaxies are clouds of millions to hundreds of billions.
Chapter 25 Galaxies and Dark Matter Dark Matter in the Universe We use the rotation speeds of galaxies to measure their mass:
Galaxies Astronomy 115. First, which of the following is a galaxy? Open cluster Globular cluster Nebula Interstellar medium (gas and dust) Supernova remnant.
Galaxies (And a bit about distances). This image shows galaxy M 100 in which the Hubble Space Telescope detected Cepheid variables.
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
The Nature of Galaxies Chapter 17. Other Galaxies External to Milky Way –established by Edwin Hubble –used Cepheid variables to measure distance M31 (Andromeda.
Copyright © 2010 Pearson Education, Inc. Clicker Questions Chapter 14 The Milky Way Galaxy.
Copyright © 2010 Pearson Education, Inc. Chapter 16 Galaxies and Dark Matter Lecture Outline.
A Long Time Ago in a Galaxy Far, Far Away…. The Milky Way Galaxy: Home Sweet Home!! Our home Galaxy is called the MILKY WAY (like the candy bar ) Our.
Universe Tenth Edition Chapter 23 Galaxies Roger Freedman Robert Geller William Kaufmann III.
Chapter 25 Galaxies and Dark Matter. 25.1Dark Matter in the Universe 25.2Galaxy Collisions 25.3Galaxy Formation and Evolution 25.4Black Holes in Galaxies.
Galaxies. Edwin Hubble ( ) Discovered that the universe goes beyond the Milky Way He was the first person to establish the distances to other.
GALAXIES & BEYOND. What is a galaxy? A galaxy is a very large group of stars held together by gravity. Size: 100,000 ly+ Contain Billions of stars separated.
A single galaxy with its millions or billions of stars is only a very small spot in the observable universe. Galaxies & AGN’s (Chapter 13) Hercules Cluster.
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
© 2017 Pearson Education, Inc.
© 2017 Pearson Education, Inc.
Galaxies.
Galaxies Star systems like our Milky Way
How fast would a galaxy 2,000 megaparsecs away be moving with respect to us, according to Hubble’s Law? Hint: H0 = 70 km/s/Mpc 1,400 km/s 14,000 km/s 140,000.
Galaxies.
© 2017 Pearson Education, Inc.
COLLECTIONS OF STARS, GAS (and DARK MATTER): HUGE VARIETY OF TYPES
GALAXIES, GALAXIES, GALAXIES!
Galaxies.
GALAXIES!.
Galaxies.
The Milky Way Our Galactic Home.
Galaxies.
Galaxies.
Galaxies.
Galaxies Chapter 16.
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
Galaxies With Active Nuclei
Galaxies With Active Nuclei
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
Homework #8 due Thursday, April 12, 11:30 pm.
Galaxies.
Other Galaxies: Hubble supersedes Shapley
Structure, Types, Known Galaxies
Presentation transcript:

Galaxies

Galaxies Star systems like our Milky Way Contain a few thousand to tens of billions of stars. Large variety of shapes and sizes

Galaxy Diversity Even seemingly empty regions of the sky contain thousands of very faint, very distant galaxies Large variety of galaxy morphologies: Spirals Ellipticals Irregular (some interacting) The Hubble Deep Field: 10-day exposure on an apparently empty field in the sky

Galaxy Classification E0, …, E7 Sa Large nucleus; tightly wound arms E0 = Spherical E1 Sb Sc Small nucleus; loosely wound arms E7 = Highly elliptical E6

Gas and Dust in Galaxies Spirals are rich in gas and dust Ellipticals are almost devoid of gas and dust Galaxies with a disk and bulge, but no dust are termed S0

Barred Spirals Some spirals show a pronounced bar structure in the center They are termed barred spiral galaxies Sequence: SBa, …, SBc, analogous to regular spirals

Irregular Galaxies Often: result of galaxy collisions / mergers Often: Very active star formation (“Starburst galaxies”) The Cocoon Galaxy NGC 4038/4039 Some: Small (“dwarf galaxies”) satellites of larger galaxies (e.g., Magellanic Clouds) Large Magellanic Cloud

Distance Measurements to Other Galaxies Cepheid Method: Using Period – Luminosity relation for classical Cepheids: Measure Cepheid’s Period  Find its luminosity  Compare to apparent magnitude  Find its distance b) Type Ia Supernovae (collapse of an accreting white dwarf in a binary system): Type Ia Supernovae have well known standard luminosities  Compare to apparent magnitudes  Find its distances Both are “Standard-candle” methods: Know absolute magnitude (luminosity)  compare to apparent magnitude  find distance.

Cepheid Distance Measurement Repeated brightness measurements of a Cepheid allow the determination of the period and thus the absolute magnitude.  Distance

The Most Distant Galaxies At very large distances, only the general characteristics of galaxies can be used to estimate their luminosities  distances. Cluster of galaxies at ~ 4 to 6 billion light years

Distance Measurements to Other Galaxies: The Hubble Law Distant galaxies are moving away from our Milky Way, with a recession velocity, vr, proportional to their distance d: vr = H0*d H0 ≈ 70 km/s/Mpc is the Hubble constant Measure vr through the Doppler effect  infer the distance

The Extragalactic Distance Scale Many galaxies are typically millions or billions of parsecs from our galaxy. Typical distance units: Mpc = Megaparsec = 1 million parsec Gpc = Gigaparsec = 1 billion parsec Distances of Mpc or even Gpc  The light we see left the galaxy millions or billions of years ago!! “Look-back times” of millions or billions of years

Galaxy Sizes and Luminosities Vastly different sizes and luminosities: From small, low-luminosity irregular galaxies (much smaller and less luminous than the Milky Way) to giant ellipticals and large spirals, a few times the Milky Way’s size and luminosity

Rotation Curves of Galaxies From blue / red shift of spectral lines across the galaxy  infer rotational velocity Plot of rotational velocity vs. distance from the center of the galaxy: Rotation Curve Observe frequency of spectral lines across a galaxy.

Supermassive Black Holes From the measurement of stellar velocities near the center of a galaxy: Infer mass in the very center  central black holes! Several million, up to more than a billion solar masses!  Supermassive black holes

Dark Matter Adding “visible” mass in: stars, interstellar gas, dust, …etc., we find that most of the mass is “invisible”! The nature of this “dark matter” is not understood at this time. Some ideas: brown dwarfs, small black holes, exotic elementary particles.

Clusters of Galaxies Galaxies generally do not exist in isolation, but form larger clusters of galaxies. Rich clusters: 1,000 or more galaxies, diameter of ~ 3 Mpc, condensed around a large, central galaxy Poor clusters: Less than 1,000 galaxies (often just a few), diameter of a few Mpc, generally not condensed towards the center

Hot Gas in Clusters of Galaxies Space between galaxies is not empty, but filled with hot gas (observable in X-rays) That this gas remains gravitationally bound provides further evidence for dark matter. Visible light X-rays Coma Cluster of Galaxies

Our Galaxy Cluster: The Local Group Milky Way Andromeda galaxy Small Magellanic Cloud Large Magellanic Cloud

Neighboring Galaxies Some galaxies of our local group are difficult to observe because they are located behind the center of our Milky Way, from our view point. Spiral Galaxy Dwingeloo 1

Interacting Galaxies Cartwheel Galaxy Particularly in rich clusters, galaxies can collide and interact. Galaxy collisions can produce ring galaxies and tidal tails. NGC 4038/4039 Often triggering active star formation: starburst galaxies

Tidal Tails Computer simulations produce similar structures. Example for galaxy interaction with tidal tails: The Mice Computer simulations produce similar structures.

Simulations of Galaxy Interactions Numerical simulations of galaxy interactions have been very successful in reproducing tidal interactions like bridges, tidal tails, and rings.

Radio image of M 64: Central regions rotating backward! Mergers of Galaxies Radio image of M 64: Central regions rotating backward! NGC 7252: Probably result of merger of two galaxies, ~ a billion years ago: Small galaxy remnant in the center is rotating backward! Multiple nuclei in giant elliptical galaxies

Galactic Cannibalism Collisions of large with small galaxies often result in complete disruption of the smaller galaxy. Small galaxy is “swallowed” by the larger one. NGC 5194 This process is called “galactic cannibalism”

ultraluminous infrared galaxies Starburst Galaxies Starburst galaxies are often very rich in gas and dust; bright in infrared: ultraluminous infrared galaxies M 82 Cocoon Galaxy

Large Scale Structure Superclusters = clusters of clusters of galaxies Superclusters appear aligned along walls and filaments. Vast regions of space are completely empty: “voids”

The Farthest Galaxies The most distant galaxies visible by HST are seen at a time when the universe was only ~ 1 billion years old.