Electron Beam as a standard candle for EHECR air shower

Slides:



Advertisements
Similar presentations
PMT absolute calibration using the Rayleigh scattering in Nitrogen air PMT absolute calibration using the Rayleigh scattering in Nitrogen air S. Yoshida,
Advertisements

Antonis Leisos KM3NeT Collaboration Meeting the calibration principle using atmospheric showers the calibration principle using atmospheric showers Monte.
Calibration for LHAASO_WFCTA Yong Zhang, LL Ma on behalf of the LHAASO collaboration 32 nd International Cosmic Ray Conference, Beijing 2011.
CRAYS and TA telescope calibration ICRR N. Sakurai, M. Fukushima Utah University L. Wiencke.
AGASA update M. Teshima ICRR, U of CfCP mini workshop Oct
PMT absolute calibration using the Rayleigh scattering in Nitrogen air PMT absolute calibration using the Rayleigh scattering in Nitrogen air ICRR N.Sakurai,
The TA Energy Scale Douglas Bergman Rutgers University Aspen UHECR Workshop April 2007.
Fluorescence from Air in Showers (FLASH) J. Belz 1, Z. Cao 2, P. Chen 3*, C. Field 3, P. Huentemeyer 2, W-Y. P. Hwang 4, R. Iverson 3, C.C.H. Jui 2, T.
Accelerator hall of the S- DALINAC – electron energies from 2 to 130 MeV available – cw and pulsed beam operation possible – source for polarized electron.
First Analysis of the Auger APF Light Source Eli Visbal (Carnegie Mellon University) Advisor: Stefan Westerhoff.
Systematics in the Pierre Auger Observatory Bruce Dawson University of Adelaide for the Pierre Auger Observatory Collaboration.
Accelerator Physics  Basic Formalism  Linear Accelerators  Circular Accelerators  Magnets  Beam Optics  Our Accelerator Greg LeBlanc Lead Accelerator.
Laser Notcher Pulse Energy Requirements & Demonstration Experiment David Johnson, Todd Johnson, Vic Scarpine.
Search for isotropic microwave radiation from electron beam in the atmosphere T. Yamamoto a, I. S. Ohota a, Y. Inome a, D. Ikeda b, H. Sagawa b, S. Ogio.
Leroy Nicolas, HESS Calibration results, 28 th ICRC Tsukuba Japan, August Calibration results of the first two H·E·S·S· telescopes Nicolas Leroy.
Coincidence analysis in ANTARES: Potassium-40 and muons  Brief overview of ANTARES experiment  Potassium-40 calibration technique  Adjacent floor coincidences.
NEW COMMENTS TO ILC BEAM ENERGY MEASUREMENTS BASED ON SYNCHROTRON RADIATION FROM MAGNETIC SPECTROMETER E.Syresin, B. Zalikhanov-DLNP, JINR R. Makarov-MSU.
2002/7/02 College, London Muon Phase Rotation at PRISM FFAG Akira SATO Osaka University.
2002/7/04 College, London Beam Dynamics Studies of FFAG Akira SATO Osaka University.
18/05/06P. Nedelec - 4th Air Fluorescence Workshop Measurements of FLY with MACFLY.
Absolute Measurement of Air Fluorescence Yield for Ultra-High Energy Cosmic Rays Paolo Privitera Carlos Hojvat Fermilab, June FD SD.
The Experimental Program of the “FLASH” Experiment.
Performance of CRTNT for Sub-EeV Cosmoc Ray Measurement Zhen Cao IHEP, Beijing & Univ. of Utah, SLC Aspen, CO, 04/2005.
EAS Reconstruction with Cerenkov Photons Shower Simulation Reconstruction Algorithm Toy MC Study Two Detector Configuration Summary M.Z. Wang and C.C.
Status of Beam loss Monitoring on CTF3 Results of Tests on LINAC and PETS as R&D for TBL Anne Dabrowski Northwestern University Thibaut Lefevre CERN CTF3.
H.E.S.S. - MAGIC – CTA meeting Installation of Working Groups Physics & Science Goals MC Simulation & Layout Telescope structures & mirrors Camera designs.
Gus Sinnis Asilomar Meeting 11/16/2003 The Next Generation All-Sky VHE Gamma-Ray Telescope.
Ultra High Energy Cosmic Rays -- Origin and Propagation of UHECRs -- M.Teshima Max-Planck-Institut f ü r Physik, M ü nchen Erice Summer School July
Claudio Di Giulio University of Roma Tor Vergata, INFN of Roma Tor Vergata IDAPP 2D Meeting, Ferrara, May The origin and nature of cosmic rays above.
VIEW on RAD HARDNESS TESTS of STS FEE IN MEPHI. Simakov A.B. – Head of “Special Microelectronics” Lab.
Status of AIRFLY fluorescence yield measurements Paolo Privitera Università di Roma Tor Vergata, INFN Prague, May 19, 2006.
Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop1 Beam Catcher in the KOPIO experiment Hideki Morii (Kyoto Univ.) for the KOPIO.
1 H. Hayano for the ATF collaboration Low Emittance Beam Generation in ATF H. Hayano for the ATF collaboration BPM electronics improvement emittance tuning.
A NEW AND PROMISING METHOD TO MEASURE ACCURATELY THE FLUORESCENCE YIELD Ph. Gorodetzky + APC team + LAL team + PHIL team 6 th Air Fluorescence Workshop,
Compact X-ray & Emittance Measurement by Laser Compton Scattering Zhi Zhao Jan. 31, 2014.
Design for Wide FOV Cherenkov telescope upgrading THE 2 nd WORKSHOP OF IHEP Shoushan Zhang Institute of High Energy Physics.
IceCube Calibration Overview Kurt Woschnagg University of California, Berkeley MANTS 2009 Berlin, 25 September identical sensors in ultraclean,
1 João Espadanal, Patricia Gonçalves, Mário Pimenta Santiago de Compostela 3 rd IDPASC school Auger LIP Group 3D simulation Of Extensive Air.
A. Zelenski a, G. Atoian a *, A. Bogdanov b, D.Raparia a, M.Runtso b, D. Steski a, V. Zajic a a Brookhaven National Laboratory, Upton, NY, 11973, USA b.
KEK Test Beam Phase I (May 2005) Makoto Yoshida Osaka Univ. MICE-FT Daresbury Aug 30th, 2005.
A Future All-Sky High Duty Cycle VHE Gamma Ray Detector Gus Sinnis/Los Alamos with A. Smith/UMd J. McEnery/GSFC.
EUSO Atmospheric Monitoring from Space M.Teshima on behalf of the EUSO collaboration MPI für Physik, München (Werner-Heisenberg-Institut)
Atmospheric Monitoring at HiRes Status Enhancements Lawrence Wiencke HiRes NSF Review Nov Washington DC.
Atmospheric Radio Soundings in Argentina - Effects of Air Density Variations - Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Bianca KeilhauerTokyo,
Medium baseline neutrino oscillation searches Andrew Bazarko, Princeton University Les Houches, 20 June 2001 LSND: MeVdecay at rest MeVdecay in flight.
Geant4 Simulation of the Pierre Auger Fluorescence Detector
An electron/positron energy monitor based on synchrotron radiation. I.Meshkov, T. Mamedov, E. Syresin, An electron/positron energy monitor based on synchrotron.
Performance of GeV gamma ray camera for SUBARU optical-infrared telescope A.Asahara*, K.Komiyama#, G.Kosugi#, H.Kubo*, S.Miyazaki#, M.Mori , M.Nakagiri#,
Z. Cao, H.H. He, J.L. Liu, M. Zha Y. Zhang The 2 nd workshop of air shower detection at high altitude.
Preliminary Profile Reconstruction of EA Hybrid Showers Bruce Dawson & Luis Prado Jr thanks to Brian Fick & Paul Sommers and Stefano Argiro & Andrea de.
Studies of Electroweak Interactions and Searches for New Physics Using Photonic Events with Missing Energy at the Large Electron-Positron Collider Marat.
Conventional source developments (300Hz Linac scheme and the cost, Part-II) Junji Urakawa, KEK PosiPol-2012 at DESY Zeuthen Contents : 0. Short review.
L. CazónHadron-Hadron & Cosmic-Rays interactions at multi-TeV energies. Trento,2-Dez Results from the Pierre Auger Observatory L. Cazon, for the.
“Performance test of a lead glass
Injector and positron source scheme. A first evaluation Thanks to O
Precise measurement of air fluo yield
Auxiliary Positron Source
Cosmic Rays at Extreme Energies The Pierre Auger Observatory
Ultra High Energy Cosmic Ray Spectrum Measured by HiRes Experiment
Tango status at Elettra
Controls CBETA controls will extend existing EPICS control system
Longitudinal Diagnostics for start-up
Absolute energy calibration of
Preliminary Profile Reconstruction of EA Hybrid Showers
大気モニタR&D Atmospheric Monitoring for TA
Telescope Array Experiment Status and Prospects
The Aperture and Precision of the Auger Observatory
R&D for FD, Radio and the layout of an infill array
CLIC luminosity monitoring/re-tuning using beamstrahlung ?
Presentation transcript:

Electron Beam as a standard candle for EHECR air shower Feb.26th, 2004 Kashiwa Masaki Fukushima / ICRR

Efficiency of Air Fluorescence Total Absorption Calorimetry by AF :  Meas. of Absolute Energy 2. Atmospheric Correction 1. Scintillation Efficiency Loss in the transmission DE > # of photons 3. Telescope Parameters Mirror Window Filter PMT QE+CE Electronics Gains Efficiency of Air Fluorescence # of photons > ADC ch. Biggest Headache: No Calibration Source to Determine Absolute Energy Scale

LE Electron Beam as Air Fluorescence Calib. Source Bulk of air shower E loss by LE electrons / γ’s 40 MeV electron x 109 particles ~ 4 x 1016 eV Critical energy ~ 95 MeV After 30 m air, ΔE~7 MeV, mult.scatt. ~ 100 mrad Cherenkov threshold ~ 25 MeV Shoot electron beam up in the sky 100 m away from the station. ( equiv. to 4 x 1020 eV shower 10 km away)

・ Distortion of focus and Horizontal Position Scan about < 50m Problems? ・ Distortion of focus and   acceptance. ・ CAMERA dead zones.   > angular steering > horizontal scan ・ Cherenkov light? >>> precise MC possible for 40 MeV photons by GEANT/EGS 100m away LINAC BEAM 67m high Small Anglular Steering LINAC BEAM 100m away

GEANT Simulation by Sakurai. 20 MeV 40 MeV 100 m away Telescope FoV FoV of 1 PMT ~100k pe / PMT From Energy Loss to ADC ch. AF Source of Known Total Energy. End-to-End Calib.

Requirements for the Accelerator  Energy: 10-40 MeV, variable  Intensity: 10 9 electrons / pulse, variable  Pulse Width: 1-10 μs  Repetition: ~ 1 Hz  Beam Size: ~10 mm φ  Beam Spread: ~1 mrad  Accuracy of Energy x # of particles: ~1%  small, stable and low power (desert spec.)  portable

Microtron idea ・ compact injector for SR ・ high energy possible 6 MeV linac ・ compact injector for SR ・ high energy possible ・ accurate energy ・ energy stepping

Linac idea ・ medical linacs with 20 MeV or less C band acc. structure S band acc. structure Klystron Pulsed Power Supply ・ medical linacs with 20 MeV or less ・ 5 GHz system for LC study at KEK (40 MeV/m reached) ・ magnetic energy analyzer required ・ very compact but magnet + Klystron is heavy

Measuring together with Laser Candle for atmosph. transparency monitoring Rayleigh scatt. Known x-section ETOT / hν = # of photons 10 mJ ~ 1016photons 100m 10 km

Working with Laser Candle Reach of Lidar (< 20 km) Laser Candle Linac Candle

Summary: Electron Beam as AF Calibration Source Absolutely calibrated AF source The idea survived initial inspections Working examples; FLASH and Super-K Linac calib. Standard beam technologies Adaptation to “desert” environment required. Very low dose, but rad. protection must be assured. ~ 2 years and ~ 1M$ for construction Help and expertise at KEK and US acc. Lab.