EE 369 POWER SYSTEM ANALYSIS

Slides:



Advertisements
Similar presentations
Numbers Treasure Hunt Following each question, click on the answer. If correct, the next page will load with a graphic first – these can be used to check.
Advertisements

1 A B C
Angstrom Care 培苗社 Quadratic Equation II
AP STUDY SESSION 2.
1
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Chapter 1 The Study of Body Function Image PowerPoint
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
David Burdett May 11, 2004 Package Binding for WS CDL.
Local Customization Chapter 2. Local Customization 2-2 Objectives Customization Considerations Types of Data Elements Location for Locally Defined Data.
CALENDAR.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Break Time Remaining 10:00.
EE 369 POWER SYSTEM ANALYSIS
Announcements Be reading Chapter 6.
Announcements Homework 6 is due on Thursday (Oct 18)
ECE 530 – Analysis Techniques for Large-Scale Electrical Systems
EE, NCKU Tien-Hao Chang (Darby Chang)
PP Test Review Sections 6-1 to 6-6
EE369 POWER SYSTEM ANALYSIS
Exarte Bezoek aan de Mediacampus Bachelor in de grafische en digitale media April 2014.
VOORBLAD.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
Adding Up In Chunks.
MaK_Full ahead loaded 1 Alarm Page Directory (F11)
Before Between After.
: 3 00.
5 minutes.
1 hi at no doifpi me be go we of at be do go hi if me no of pi we Inorder Traversal Inorder traversal. n Visit the left subtree. n Visit the node. n Visit.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Essential Cell Biology
Converting a Fraction to %
Numerical Analysis 1 EE, NCKU Tien-Hao Chang (Darby Chang)
Clock will move after 1 minute
Intracellular Compartments and Transport
PSSA Preparation.
Essential Cell Biology
Physics for Scientists & Engineers, 3rd Edition
Energy Generation in Mitochondria and Chlorplasts
Announcements Be reading Chapter 6, also Chapter 2.4 (Network Equations). HW 5 is 2.38, 6.9, 6.18, 6.30, 6.34, 6.38; do by October 6 but does not need.
Select a time to count down from the clock above
Copyright Tim Morris/St Stephen's School
1 Dr. Scott Schaefer Least Squares Curves, Rational Representations, Splines and Continuity.
EE 369 POWER SYSTEM ANALYSIS
Lecture 2 Complex Power, Reactive Compensation, Three Phase Dr. Youssef A. Mobarak Department of Electrical Engineering EE 351 POWER SYSTEM ANALYSIS.
FIGURE 3-1 Basic parts of a computer. Dale R. Patrick Electricity and Electronics: A Survey, 5e Copyright ©2002 by Pearson Education, Inc. Upper Saddle.
ECE 530 – Analysis Techniques for Large-Scale Electrical Systems Prof. Hao Zhu Dept. of Electrical and Computer Engineering University of Illinois at Urbana-Champaign.
EE 369 POWER SYSTEM ANALYSIS
ECE 333 Renewable Energy Systems Lecture 14: Power Flow Prof. Tom Overbye Dept. of Electrical and Computer Engineering University of Illinois at Urbana-Champaign.
Announcements Homework #4 is due now Homework 5 is due on Oct 4
Lecture 13 Newton-Raphson Power Flow Professor Tom Overbye Department of Electrical and Computer Engineering ECE 476 POWER SYSTEM ANALYSIS.
Lecture 11 Power Flow Professor Tom Overbye Special Guest Appearance by Professor Sauer! Department of Electrical and Computer Engineering ECE 476 POWER.
ECE 476 Power System Analysis Lecture 12: Power Flow Prof. Tom Overbye Dept. of Electrical and Computer Engineering University of Illinois at Urbana-Champaign.
ECE 476 Power System Analysis Lecture 14: Power Flow Prof. Tom Overbye Dept. of Electrical and Computer Engineering University of Illinois at Urbana-Champaign.
ECE 476 Power System Analysis Lecture 13: Power Flow Prof. Tom Overbye Dept. of Electrical and Computer Engineering University of Illinois at Urbana-Champaign.
ECE 530 – Analysis Techniques for Large-Scale Electrical Systems Prof. Hao Zhu Dept. of Electrical and Computer Engineering University of Illinois at Urbana-Champaign.
ECE 476 POWER SYSTEM ANALYSIS
ECE 476 POWER SYSTEM ANALYSIS
ECE 476 Power System Analysis
ECEN 460 Power System Operation and Control
ECE 476 Power System Analysis
ECE 476 POWER SYSTEM ANALYSIS
ECEN 460 Power System Operation and Control
ECE 476 POWER SYSTEM ANALYSIS
ECEN 460 Power System Operation and Control
ECEN 460 Power System Operation and Control
Presentation transcript:

EE 369 POWER SYSTEM ANALYSIS Lecture 12 Power Flow Tom Overbye and Ross Baldick

Announcements Homework 9 is: 3.47, 3.49, 3.53, 3.57, 3.61, 6.2, 6.9, 6.13, 6.14, 6.18, 6.19, 6.20; due November 7. (Use infinity norm and epsilon = 0.01 for any problems where norm or stopping criterion not specified.) Read Chapter 12, concentrating on sections 12.4 and 12.5. Homework 10 is 6.23, 6,25, 6.26, 6.28, 6.29, 6.30 (see figure 6.18 and table 6.9 for system), 6.31, 6.38, 6.42, 6.46, 6.52, 6.54; due November 14. Homework 11 is 6.43, 6.48, 6.59, 6.61, 12.19, 12.22, 12.20, 12.24, 12.26, 12.28, 12.29; due Nov. 21.

Power System Planning Source: Midwest ISO MTEP08 Report

MISO Generation Queue Source: Midwest ISO MTEP08 Report

MISO Conceptual EHV Overlay Black lines are DC, blue lines are 765kV, red are 500 kV Source: Midwest ISO MTEP08 Report

ERCOT Also has considerable wind and expecting considerable more! “Competitive Renewable Energy Zones” study identified most promising wind sites, Building around $5 billion (original estimate, now closer to $7 billion) of transmission to support an additional 11 GW of wind. Will be completed in 2014.

CREZ Transmission Lines

NR Application to Power Flow

Real Power Balance Equations

Newton-Raphson Power Flow

Power Flow Variables

Power Flow Variables

N-R Power Flow Solution

Power Flow Jacobian Matrix

Power Flow Jacobian Matrix, cont’d

Two Bus Newton-Raphson Example For the two bus power system shown below, use the Newton-Raphson power flow to determine the voltage magnitude and angle at bus two. Assume that bus one is the slack and SBase = 100 MVA.

Two Bus Example, cont’d

Two Bus Example, cont’d

Two Bus Example, First Iteration

Two Bus Example, Next Iterations

Two Bus Solved Values Once the voltage angle and magnitude at bus 2 are known we can calculate all the other system values, such as the line flows and the generator reactive power output

Two Bus Case Low Voltage Solution

Low Voltage Solution, cont'd

Two Bus Region of Convergence Graph shows the region of convergence for different initial guesses of bus 2 angle (horizontal axis) and magnitude (vertical axis). Red region converges to the high voltage solution, while the yellow region to the low solution Maximum of 15 iterations

PV Buses Since the voltage magnitude at PV buses is fixed there is no need to explicitly include these voltages in x nor write the reactive power balance equations: the reactive power output of the generator varies to maintain the fixed terminal voltage (within limits), so we can just set the reactive power product to whatever is needed. An alternative is these variations/equations can be included by just writing the explicit voltage constraint for the generator bus: |Vi | – Vi setpoint = 0

Three Bus PV Case Example

PV Buses With Newton-Raphson, PV buses means that there are less unknown variables we need to calculate explicitly and less equations we need to satisfy explicitly. Reactive power balance is satisfied implicitly by choosing reactive power production to be whatever is needed, once we have a solved case (like real power at the slack bus). Contrast to Gauss iterations where PV buses complicated the algorithm.

Modeling Voltage Dependent Load

Voltage Dependent Load Example

Voltage Dependent Load, cont'd

Voltage Dependent Load, cont'd With constant impedance load the MW/MVAr load at bus 2 varies with the square of the bus 2 voltage magnitude. This if the voltage level is less than 1.0, the load is lower than 200/100 MW/MVAr. In practice, load is the sum of constant power, constant impedance, and, in some cases, constant current load terms: “ZIP” load.

Solving Large Power Systems Most difficult computational task is inverting the Jacobian matrix (or solving the update equation): factorizing a full matrix is an order n3 operation, meaning the amount of computation increases with the cube of the size of the problem. this amount of computation can be decreased substantially by recognizing that since Ybus is a sparse matrix, the Jacobian is also a sparse matrix. using sparse matrix methods results in a computational order of about n1.5. this is a substantial savings when solving systems with tens of thousands of buses.

Newton-Raphson Power Flow Advantages fast convergence as long as initial guess is close to solution large region of convergence Disadvantages each iteration takes much longer than a Gauss-Seidel iteration more complicated to code, particularly when implementing sparse matrix algorithms Newton-Raphson algorithm is very common in power flow analysis.