S. Manich, L. García, J. Rius, R. Rodríguez, J. Figueras

Slides:



Advertisements
Similar presentations
Digital Integrated Circuits© Prentice Hall 1995 Design Methodologies Design for Test.
Advertisements

Philips Research ICS 252 class, February 3, The Trimedia CPU64 VLIW Media Processor Kees Vissers Philips Research Visiting Industrial Fellow
Evaluating “find a path” reachability queries P. Bouros 1, T. Dalamagas 2, S.Skiadopoulos 3, T. Sellis 1,2 1 National Technical University of Athens 2.
Weighted Random and Transition Density Patterns for Scan-BIST Farhana Rashid* Vishwani D. Agrawal Auburn University ECE Department, Auburn, Alabama
NCHUCS1 Scan Chain Reorder Sying-Jyan Wang Department of Computer Science National Chung-Hsing University.
1 EE 587 SoC Design & Test Partha Pande School of EECS Washington State University
On the Selection of Efficient Arithmetic Additive Test Pattern Generators S. Manich, L. García, L. Balado, E. Lupon, J. Rius, R. Rodriguez, J. Figueras.
Scalable Test Pattern Generator Design Method for BIST Petr Fišer, Hana Kubátová Czech Technical University in Prague Faculty of Electrical Engineering.
Efficient Compression and Application of Deterministic Patterns in a Logic BIST Architecture Peter Wohl, John A. Waicukauski, Sanjay Patel, Minesh B. Amin.
Copyright 2005, Agrawal & BushnellVLSI Test: Lecture 21alt1 Lecture 21alt BIST -- Built-In Self-Test (Alternative to Lectures 25, 26 and 27) n Definition.
ISSPIT Ajman University of Science & Technology, UAE
DATAPATHS 3) Shifters. 4) Comparators 5) Counters.
11/17/05ELEC / Lecture 201 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
Design for Testability Theory and Practice Lecture 11: BIST
Practically Realizing Random Access Scan By Anand Mudlapur ECE Dept. Auburn University.
Fall 2006, Nov. 30 ELEC / Lecture 12 1 ELEC / (Fall 2006) Low-Power Design of Electronic Circuits Test Power Vishwani D.
1 Spectral BIST Alok Doshi Anand Mudlapur. 2 Overview Introduction to spectral testing Previous work – Application of RADEMACHER – WALSH spectrum in testing.
Comparison of LFSR and CA for BIST
ELEN 468 Lecture 251 ELEN 468 Advanced Logic Design Lecture 25 Built-in Self Test.
TOPIC - BIST architectures I
3. Built-In Self Test (BIST): Periodical Off-Line Test on the Field 3.1 General Structure Unit Under Test Data Compressor Data Generator Comparator Display.
An Embedded Core DFT Scheme to Obtain Highly Compressed Test Sets Abhijit Jas, Kartik Mohanram, and Nur A. Touba Eighth Asian Test Symposium, (ATS.
Spring 07, Jan 30 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2007 SOC Test Scheduling Vishwani D. Agrawal James.
9/15/09 - L25 Registers & Load Enable Copyright Joanne DeGroat, ECE, OSU1 Registers & Load Enable.
Testimise projekteerimine: Labor 2 BIST Optimization
ATPG - test pattern generation process 1. Target faults 2. Generate test cube: 1-5% 3. Random fill: 99-95% 4. Stimuli on ATE 5. Response on ATE.
Modern VLSI Design 4e: Chapter 8 Copyright  2008 Wayne Wolf Topics Testability and architecture. Design methodologies. Multiprocessor system-on-chip.
A Test-Per-Clock LFSR Reseeding Algorithm for Concurrent Reduction on Test Sequence Length and Test Data Volume Adviser :蔡亮宙 Student ;蔡政宏.
Pseudo-Random Pattern Generator Design for Column ‑ Matching BIST Petr Fišer Czech Technical University Dept. of Computer Science and Engineering.
December, 2004 Ecole Polytechnique 1 Deterministic BIST By Amiri Amir Mohammad Professor Dr. Abdelhakim Khouas Project Presentation for ELE6306 (Test des.
TOPIC : Introduction to Compression Techniques UNIT 5 : BIST and BIST Architectures Module 5.4 Compression Techniques.
Doc.: IEEE /069 Submission May 2000 V. S. Somayazulu et. al., Sharp LaboratoriesSlide 1 Proposal for extension of the IEEE b PHY to Higher.
BIST Pattern Generator inserter using Cellular Automata By Jeffrey Dwoskin Project for Testing of ULSI Circuits, Spring 2002, Rutgers University 5/15/02.
Arithmetic Test Pattern Generation: A Bit Level Formulation of the Optimization Problem S. Manich, L. García and J. Figueras.
Built-In Self Test (BIST).  1. Introduction  2. Pattern Generation  3. Signature Analysis  4. BIST Architectures  5. Summary Outline.
Technical University Tallinn, ESTONIA Copyright by Raimund Ubar 1 Raimund Ubar N.Mazurova, J.Smahtina, E.Orasson, J.Raik Tallinn Technical University.
A Test-Per-Clock LFSR Reseeding Algorithm for Concurrent Reduction on Test Sequence Length and Test Data Volume Wei-Cheng Lien 1, Kuen-Jong Lee 1 and Tong-Yu.
Multiple-Vector Column-Matching BIST Design Method Petr Fišer, Hana Kubátová Department of Computer Science and Engineering Czech Technical University.
TOPIC : RTD, SST UNIT 5 : BIST and BIST Architectures Module 5.2 Specific BIST Architectures.
November 25Asian Test Symposium 2008, Nov 24-27, Sapporo, Japan1 Sequential Circuit BIST Synthesis using Spectrum and Noise from ATPG Patterns Nitin Yogi.
POWER OPTIMIZATION IN RANDOM PATTERN GENERATOR By D.Girish Kumar 108W1D8007.
July 10, th VLSI Design and Test Symposium1 BIST / Test-Decompressor Design using Combinational Test Spectrum Nitin Yogi Vishwani D. Agrawal Auburn.
Computers’ Basic Organization
C. Kiekintveld et al., AAMAS 2009 (USC) Presented by Neal Gupta
Hardware Testing and Designing for Testability
Phase transition in the Countdown problem
COUPING WITH THE INTERCONNECT
Test Sequence Length Requirements for Scan-based Testing
VLSI Testing Lecture 14: Built-In Self-Test
Optical Networks & Smart Grid Lab.
Technology and the Evolution of Complexity
Cryptography Lecture 15.
High-capacity image hiding scheme based on vector quantization
مفهوم الموازنة العامة المقدمة
Chapter 2- Visual Basic Schneider
IP Traceback Problem: How do we determine where malicious packet came from ? It’s a problem because attacker can spoof source IP address If we know where.
Sungho Kang Yonsei University
Aiman H. El-Maleh Sadiq M. Sait Syed Z. Shazli
Discrete Controller Synthesis
Automatic Segmentation of Data Sequences
Density-Based Image Vector Quantization Using a Genetic Algorithm
MS Thesis Defense Presentation by Mustafa Imran Ali COE Department
Lecture 26 Logic BIST Architectures
Reseeding-based Test Set Embedding with Reduced Test Sequences
Mixed-Mode BIST Based on Column Matching
Case Injected Genetic Algorithms
Test Data Compression for Scan-Based Testing
Information and Computer Security CPIS 312 Lab 4 & 5
Pseudorandom Numbers Network Security.
Cryptography Lecture 15.
Presentation transcript:

S. Manich, L. García, J. Rius, R. Rodríguez, J. Figueras Improving the Efficiency of Arithmetic BIST by Combining Targeted and General Purpose Patterns UPC S. Manich, L. García, J. Rius, R. Rodríguez, J. Figueras

Reuse Internal Structures Increment (I) Seed (S) Test Vectors DATAPATH  Test Pattern Generator Signature Analyzer First proposed in 1994 [5] Better than LFSRs in 1996 [7]

Example 6 bits 1 0 0 0 0 0 1  0 0 0 0 0 1

Example 6 bits 1 0 0 0 0 0 1  0 0 0 0 1 0

Example 6 bits 1 0 0 0 0 0 1  0 0 0 1 0 0

Example 6 bits 1 0 0 0 0 0 1  0 0 1 0 0 0

Example 6 bits 1 0 0 0 0 0 1  0 1 0 0 0 0

Example 6 bits 1 0 0 0 0 0 1  1 0 0 0 0 0

Example 6 bits 1 0 0 0 0 0 1  1 0 0 0 0 0

Example 6 bits 1 0 1 0 1 0 1  1 0 0 0 0 0

TEST WINDOW Large Input Sizes   CUT GENERATOR COMPACTOR INCREMENT SEED TEST WINDOW CUT

The Key Problem (budget) M FC Test length N (Limited) L1 L2 L3 L4 I4 available available available I4 S4 I3 (S4 I4 L4) S3 I2 (S3 I3 L3) S2 (S2 I2 L2) I1 (S1 I1 L1) S1 Test length N (Limited)

Initial List of TV ATPG CUT TV(FC*) 1 2 ... k-1

Mayer et al. 1997 Random Optimize L1L2L3L4L5L6 I6 S6 I5 S5 I4 S4 I3 S3 sliding window I2 S2 I1 S1 TV(FC*) 1 2 ... k-1

Mayer et al. 1997 Random Optimize I1 Maximal cycle length sliding window I1 TV(FC*) 1 2 ... k-1

Mayer et al. 1997 Random Optimize L1 I1 S1 sliding window TV(FC*) 1 2 1 2 ... k-1

Mayer et al. 1997 Random Optimize L1 I2 I1 S1 Maximal cycle length sliding window I2 I1 S1 TV(FC*) 1 2 ... k-1

Mayer et al. 1997 Random Optimize L1L2 I2 S2 I1 S1 sliding window TV(FC*) 1 2 ... k-1

Mayer et al. 1997 Drawback: Storage of random values  L1L2L3L4L5L6 I6 INCREMENT I2 S2  I1 S1 SEED TV(FC*) 1 2 ... k-1

Chiusano et al. 2001 SEEDs INCREMENTs Random TV(FC*) 1 2 ... k-1

Chiusano et al. 2001 Optimize L1L2L3L4L5L6 I6 S6 I5 S5 I4 S4 I3 S3 I2 SEEDs INCREMENTs I5 S5 I4 S4 I3 S3 Optimize Set Covering I2 S2 I1 S1 TV(FC*) 1 2 ... k-1

Chiusano et al. 2001 Drawback: Storage of random values  L1L2L3L4L5L6 INCREMENT I2 S2  I1 S1 SEED TV(FC*) 1 2 ... k-1

Symbolic manipulation Dorsch et al. 1998 Optimize Symbolic manipulation TV(FC*) 1 2 ... k-1

Symbolic manipulation Dorsch et al. 1998 L1L2L3L4L5L6 I6 S6 Optimize Symbolic manipulation I5 S5 I4 S4 I3 S3 Aproximations I2 S2 I1 S1 TV(FC*) 1 2 ... k-1

Dorsch et al. 1998 L1L2L3L4L5L6 Drawback: Splitting Aproximations

Dorsch et al. 1998 Drawback: Splitting   L1L2L3L4L5L6 TV(FC*) INCREMENT  INCREMENT SEED  SEED TV(FC*) 1 2 ... k-1

Cataldo et al. 2000 Tunning Random parameters Optimize Random L1L2L3L4L5L6 Random Tunning parameters I6 S6 I5 S5 I4 S4 I3 S3 Optimize Genetic algorithm I2 S2 I1 Selection and procreation rules S1 TV(FC*) 1 2 ... k-1 Random

Cataldo et al. 2000  Drawback: Storage of random values L1L2L3L4L5L6 I6 S6 Drawback: Storage of random values Rules sensible to CUT I5 S5 I4 S4 I3 S3 INCREMENT I2 S2  I1 S1 SEED TV(FC*) 1 2 ... k-1

Our proposal: LUCSAM+ GPP TPP S9 S8 S7 S6 S5 S4 I3 S3 I2 S2 I1 S1 L1L2L3L4L5L6L7L8L9 TV(FC*) 1 2 ... k-1 S9 S8 S7 S6 S5 GPP S4 I3 S3 I2 TPP S2 I1 S1 TC(FC*) 1 2 ... m-1

Targeted Purpose Patterns (TPP) INCREMENT  SEED

Generic Purpose Patterns (GPP) SEED  SEED

Results UPC