Mónica Martí y Carmen Ródenas Dpto. Análisis Económico Aplicado

Slides:



Advertisements
Similar presentations
“Students” t-test.
Advertisements

Linear Regression.
Brief introduction on Logistic Regression
Outline input analysis input analyzer of ARENA parameter estimation
Inference about the Difference Between the
Nguyen Ngoc Anh Nguyen Ha Trang
Binary Response Lecture 22 Lecture 22.
Statistics II: An Overview of Statistics. Outline for Statistics II Lecture: SPSS Syntax – Some examples. Normal Distribution Curve. Sampling Distribution.
Hypothesis Testing Steps of a Statistical Significance Test. 1. Assumptions Type of data, form of population, method of sampling, sample size.
Topic 3: Regression.
C. Logit model, logistic regression, and log-linear model A comparison.
INFERENTIAL STATISTICS – Samples are only estimates of the population – Sample statistics will be slightly off from the true values of its population’s.
MODELS OF QUALITATIVE CHOICE by Bambang Juanda.  Models in which the dependent variable involves two ore more qualitative choices.  Valuable for the.
AM Recitation 2/10/11.
Estimation and Hypothesis Testing. The Investment Decision What would you like to know? What will be the return on my investment? Not possible PDF for.
Review of Statistical Inference Prepared by Vera Tabakova, East Carolina University ECON 4550 Econometrics Memorial University of Newfoundland.
Statistical Review We will be working with two types of probability distributions: Discrete distributions –If the random variable of interest can take.
University quality, interregional brain drain and spatial inequality: the case of Italy Motivation and objectives This research aimed at analyzing and.
LECTURE 19 THURSDAY, 14 April STA 291 Spring
Limited Dependent Variables Ciaran S. Phibbs May 30, 2012.
1 היחידה לייעוץ סטטיסטי אוניברסיטת חיפה פרופ’ בנימין רייזר פרופ’ דוד פרג’י גב’ אפרת ישכיל.
1 Chapter 10: Introduction to Inference. 2 Inference Inference is the statistical process by which we use information collected from a sample to infer.
In-depth Analysis of Census Data on Migration Country Course on Analysis and Dissemination of Population and Housing Census Data with Gender Concern
Copyright © 2013, 2009, and 2007, Pearson Education, Inc. Chapter 13 Multiple Regression Section 13.3 Using Multiple Regression to Make Inferences.
Chapter 13: Limited Dependent Vars. Zongyi ZHANG College of Economics and Business Administration.
Business Intelligence and Decision Modeling
Limited Dependent Variables Ciaran S. Phibbs. Limited Dependent Variables 0-1, small number of options, small counts, etc. 0-1, small number of options,
Review of Statistical Inference Prepared by Vera Tabakova, East Carolina University ECON 4550 Econometrics Memorial University of Newfoundland.
Copyright © 2013, 2009, and 2007, Pearson Education, Inc. Chapter 10 Comparing Two Groups Section 10.1 Categorical Response: Comparing Two Proportions.
Statistical Inference Drawing conclusions (“to infer”) about a population based upon data from a sample. Drawing conclusions (“to infer”) about a population.
Qualitative and Limited Dependent Variable Models ECON 6002 Econometrics Memorial University of Newfoundland Adapted from Vera Tabakova’s notes.
Review of Statistical Inference Prepared by Vera Tabakova, East Carolina University.
The Probit Model Alexander Spermann University of Freiburg SS 2008.
Beginners statistics Assoc Prof Terry Haines. 5 simple steps 1.Understand the type of measurement you are dealing with 2.Understand the type of question.
Statistical Inference for the Mean Objectives: (Chapter 8&9, DeCoursey) -To understand the terms variance and standard error of a sample mean, Null Hypothesis,
Evaluating Hypotheses. Outline Empirically evaluating the accuracy of hypotheses is fundamental to machine learning – How well does this estimate its.
Logit Models Alexander Spermann, University of Freiburg, SS Logit Models.
Instructor: R. Makoto 1richard makoto UZ Econ313 Lecture notes.
Econometric analysis of CVM surveys. Estimation of WTP The information we have depends on the elicitation format. With the open- ended format it is relatively.
Non-Linear Dependent Variables Ciaran S. Phibbs November 17, 2010.
Christopher, Anna, and Casey
Measuring International Migration: An Example from the U. S
The Probit Model Alexander Spermann University of Freiburg SoSe 2009
Labor Economics, 4th edition
Statistical Analysis Urmia University
AP Statistics Comparing Two Proportions
M.Sc. in Economics Econometrics Module I
William Greene Stern School of Business New York University
HYPOTHESIS TESTING Asst Prof Dr. Ahmed Sameer Alnuaimi.
Confidence Intervals and Hypothesis Tests for Variances for One Sample
Simposio de Análisis Económico - Diciembre 2008
More about Posterior Distributions
Chapter Nine Part 1 (Sections 9.1 & 9.2) Hypothesis Testing
Chapter 9: Hypothesis Tests Based on a Single Sample
chapter-7 hypothesis testing for quantitative variable
Statistical NLP: Lecture 4
Essential Statistics Introduction to Inference
YOU HAVE REACHED THE FINAL OBJECTIVE OF THE COURSE
Bryan Kelly Asaf Manela Alan Moreira
Categorical Data Analysis Review for Final
Logistic Regression.
Hypothesis Testing.
Interval Estimation and Hypothesis Testing
LIMITED DEPENDENT VARIABLE REGRESSION MODELS
Statistics II: An Overview of Statistics
in the Spanish Labour Market:
MPHIL AdvancedEconometrics
University of Minnesota and CEPR
YOU HAVE REACHED THE FINAL OBJECTIVE OF THE COURSE
Presentation transcript:

Repeat migrations in Spain: an approximation to its determinants (Preliminary results) Mónica Martí y Carmen Ródenas Dpto. Análisis Económico Aplicado Instituto Universitario de Desarrollo y Paz

To investigate the reasons which lead immigrants to carrying out repeat internal migrations in Spain Aim: To find out whether or not the facts support some of the different hypothesis about the reasons for this phenomenon ¿How? By using a multinomial probit and a binary logit model to estimate the probability of repeat migrations for migrants

Outline: The causes for the repeat migrations Data and used variables in the estimations Brief description of the used econometric specifications Results Conclusions

1. The causes for repeat migrations Disappointment hypothesis Process of optimization Life cycle context (personal events) Decisions not taken by the immigrant or his family To getting administrative benefits (false migrations) Ejemplos

Migrations for migrants 2. The EVR microdata Migrants and migrations, EVR 2003-05 Migrations for migrants Migrants % Migrations 1 5.128.437 89,81 80,55 2 514.960 9,02 1.029.920 16,18 3 58.726 1,03 176.178 2,77 4 7.085 0,12 28.340 0,45 5 725 0,01 3.625 0,06 6 96 0,00 576 7 14 8 Total 5.710.032 100 6.367.098 In 2004, 25, 87% of movements are made by migrants who had already moved in 2003 or who would go on to move again in 2004 or 2005.

32 months later We are going to estimate the probability of repeat migrations for migrants After a first migration, a migrant can: Not move again Do an onward move (ABC) Do a return move (ABA) Migrants who come from abroad Migrants who come from the interior Smaller sample 1/1/2003 36 31/12/2005 Time interval 33 18 4 Short observation period: bigger sample but unbalanced Long observation period: smaller sample but balanced

Sample size (32 months) Total Not move again onward return Comes from the interior All 828.096 Spaniards 662.601 Foreigners 165.495 48,3% 50,2% 41,1% 25,2% 22,2% 37,3% 26,5% 27,7% 21,6% Comes from abroad All 265.433 Spaniards 24.794 Foreigners 240.639 54,6% 70,2% 53,0% 45,4% 29,8% 47,0% - Total migrants All 1.093.529 Spaniards 62,86% Foreigners 37,14%

Sex Interior Abroad Female Male All Not move again Return Onward 48,8 51,0 46,9 51,2 49,0 53,1 48,5 46,0 51,5 54,0 Spaniards 49,5 52,1 49,1 50,5 47,9 50,9 49,6 47,6 50,4 52,4 Foreigners 45,5 45,6 41,6 54,5 54,4 58,4 48,4 45,9 51,6 54,1

Age Interior 0-5 6-18 19-22 23-39 40-48 49 y + All Not move again Return Onward 6,9 8,7 7,0 10,6 11,5 9,6 4,0 7,4 5,6 47,0 46,4 57,5 12,6 10,8 11,0 18,9 15,2 9,3 Spaniards 7,5 9,7 8,9 11,9 10,3 3,9 5,4 44,9 43,8 54,7 12,2 10,0 20,8 16,9 10,7 Foreigners 4,1 3,6 2,6 9,8 7,8 4,9 6,1 56,9 59,5 64,3 14,5 13,7 13,4 6,6 5,8

Age Abroad 0-5 6-18 19-22 23-39 40-48 49 y + All Not move again Onward 4,7 4,3 14,6 11,1 7,4 10,3 44,4 56,1 11,3 17,6 7,1 Spaniards 6,1 9,7 8,5 10,4 5,6 38,4 41,9 12,0 31,3 20,5 Foreigners 4,5 3,9 15,5 7,8 10,7 45,3 57,0 15,7 6,2

Previous migration to the first one on record Interior Yes No All Not move again Return Onward 71,5 64,1 80,0 28,5 35,9 20,0 Spaniards 65,9 57,3 71,9 34,1 42,7 28,1 Foreigners 98,6 98,5 99,3 1,4 1,5 0,7

HDI of the origin country IDH<0,5 0,75>IDH0,5 0,9>IDH0,75 IDH0,9 Foreigners come from the interior Not move again Return Onward 3,6 3,4 4,8 21,3 25,0 28,0 61,9 66,7 60,9 13,1 4,9 6,3 Foreigners come from abroad 2,3 4,3 15,2 27,1 63,1 59,7 19,4 8,9

Type of the first movement Interior Intra-provincial Inter-provincial All Not move again Return Onward 64,6 54,3 45,1 35,4 45,7 54,9 Spaniards 65,9 54,7 45,8 34,1 45,3 54,2 Foreigners 58,5 52,5 43,4 41,5 47,5 56,6

Island Interior Abroad No island All Not move again Return Onward 7,8 10,9 10,5 92,2 89,1 89,5 9,1 - 6,8 90,9 93,2 Spaniards 7,5 11,4 11,5 92,5 88,6 88,5 10,3 13,5 89,7 86,5 Foreigners 9,0 8,7 8,2 91,0 91,3 91,8 6,4 93,6

Municipality size (thousands of persons) Interior -10 10-20 20-50 50-100 +100 P.capital All Not move again Return Onward 29,3 27,6 25,3 13,3 13,6 15,7 16,1 16,5 10,7 11,5 11,7 8,3 9,2 22,7 23,2 23,7 Spaniards 31,3 29,2 27,0 13,5 14,0 15,5 16,0 16,6 10,1 11,3 7,4 6,9 7,6 22,0 23,0 23,5 Foreigners 19,0 19,1 21,3 11,9 12,0 12,8 16,2 13,4 12,4 12,5 15,0 13,2 26,6 24,5 24,1

Municipality size (thousands of persons) Abroad -10 10-20 20-50 50-100 +100 P.capital All Not move again Return 15,6 19,9 10,6 11,3 15,3 15,1 12,1 11,8 10,2 11,2 36,2 30,7 Spaniards 19,4 10,3 11,5 13,0 14,7 10,4 12,0 7,3 9,1 39,5 32,8 Foreigners 12,3 35,7 30,6

Labour market dynamics Socioeconomic Dimension Province of the first destination (PCA) Interior (mean) Economic Weight Standard of living Labour market dynamics Productivity Growth All Not move again Return Onward 2,0 1,9 2,1 0,5 0,7 0,2 -0,1 Spaniards 1,7 0,4 0,6 0,1 Foreigners 2,6 2,4 1,0 0,9 0,3 -0,2

Labour market dynamics Socioeconomic Dimension Province of the first destination (PCA) Abroad (mean) Economic Weight Standard of living Labour market dynamics Productivity Growth All Not move again Onward 2,6 2,5 1,0 0,4 0,3 -0,2 Spaniards 2,3 2,2 0,5 0,0 -0,1 Foreigners 2,9 2,7 0,9 0,6

3.- Econometric specification The statistic specification can be motivated as discrete-choice models in which a person maximizes her utility: So, the probability of alternative j being chosen is:

Migrants who come from abroad (binary choice model) We can fit a binary logit model, assuming that the error terms have a logistic distribution (j= 0, 1); (i=1,…,n) Migrants who come from the interior (multinomial choice model) We can fit a multinomial probit model Where  is the standard normal cdf, j= 0, 1, 2 ; i=1,…,n

Hausman-McFadden test of Independence of Irrelevant alternatives assumption (IIA) Note: Hausman and McFadden indicate that a negative result is evidence that the IIA hypothesis has not been violated.

4.-Results Binary logit model in terms: the relative risk ratios (RRR) Multinomial probit model in terms: marginal effects calculated as the change in the predicted probability when the independent variable changes from 0 to 1, in the case of binary variables, or from ½ σ below base to ½ σ above, in the case of continuous variables, holding other variables at their reference values (binary variables) or to their means (continuous variables). Reference categories: Sample from the interior: male, Spanish, from 23 to 39 years old, with a previous migration, first movement is intra-provincial whose destination is a municipality with less than 10.001 hab., in a non island province. If he/she is a foreigner, HDI from 0,75 to 0,9. Sample from abroad: foreigner, first destination in a province capital.

-2.5 -2 -1.5 1 1.5 2 Note: We only show the parameters with p-value ≤ 0,05. Moreover, the magnitudes of positive and negative are compared by taking the inverse of the negative effect (-1/RRR). Conclusion

? ? ? ? ? Conclusion