Volume 107, Issue 10, Pages (November 2014)

Slides:



Advertisements
Similar presentations
Intramembrane Water Associated with TOAC Spin-Labeled Alamethicin: Electron Spin- Echo Envelope Modulation by D2O  R. Bartucci, R. Guzzi, L. Sportelli,
Advertisements

Volume 112, Issue 11, Pages (June 2017)
Probing Membrane Order and Topography in Supported Lipid Bilayers by Combined Polarized Total Internal Reflection Fluorescence-Atomic Force Microscopy 
Volume 109, Issue 8, Pages (October 2015)
Diffusion in a Fluid Membrane with a Flexible Cortical Cytoskeleton
Volume 105, Issue 9, Pages (November 2013)
Dynamics of Active Semiflexible Polymers
Influence of Chain Length and Unsaturation on Sphingomyelin Bilayers
R. Jay Mashl, H. Larry Scott, Shankar Subramaniam, Eric Jakobsson 
Volume 107, Issue 1, Pages (July 2014)
Volume 99, Issue 10, Pages (November 2010)
Composition Fluctuations in Lipid Bilayers
Determination of the Hydrocarbon Core Structure of Fluid Dioleoylphosphocholine (DOPC) Bilayers by X-Ray Diffraction Using Specific Bromination of the.
Phase Transitions in Biological Systems with Many Components
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Volume 103, Issue 12, Pages (December 2012)
Volume 104, Issue 1, Pages (January 2013)
Volume 111, Issue 2, Pages (July 2016)
Christa Trandum, Peter Westh, Kent Jørgensen, Ole G. Mouritsen 
Volume 104, Issue 3, Pages (February 2013)
Volume 106, Issue 6, Pages (March 2014)
Volume 96, Issue 1, Pages (January 2009)
Volume 112, Issue 4, Pages (February 2017)
PH-Dependent Conformation, Dynamics, and Aromatic Interaction of the Gating Tryptophan Residue of the Influenza M2 Proton Channel from Solid-State NMR 
Experimental and Computational Studies Investigating Trehalose Protection of HepG2 Cells from Palmitate-Induced Toxicity  Sukit Leekumjorn, Yifei Wu,
Lipid Interactions and Organization in Complex Bilayer Membranes
Volume 114, Issue 2, Pages (January 2018)
Volume 99, Issue 8, Pages (October 2010)
H.M. Seeger, G. Marino, A. Alessandrini, P. Facci  Biophysical Journal 
Modulating Vesicle Adhesion by Electric Fields
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Ivan V. Polozov, Klaus Gawrisch  Biophysical Journal 
Volume 114, Issue 5, Pages (March 2018)
Rong-juan Feng, Lu Lin, Yi-yi Li, Ming-hua Liu, Yuan Guo, Zhen Zhang 
Volume 106, Issue 3, Pages (February 2014)
Volume 113, Issue 6, Pages (September 2017)
Hyunbum Jang, Buyong Ma, Thomas B. Woolf, Ruth Nussinov 
Calcium Enhances Binding of Aβ Monomer to DMPC Lipid Bilayer
G. Garbès Putzel, Mark J. Uline, Igal Szleifer, M. Schick 
Volume 103, Issue 8, Pages (October 2012)
Sunhwan Jo, Joseph B. Lim, Jeffery B. Klauda, Wonpil Im 
Abhishek Mandal, Patrick C.A. van der Wel  Biophysical Journal 
Desmosterol May Replace Cholesterol in Lipid Membranes
Volume 76, Issue 3, Pages (March 1999)
Grischa R. Meyer, Justin Gullingsrud, Klaus Schulten, Boris Martinac 
Cholesterol Modulates the Dimer Interface of the β2-Adrenergic Receptor via Cholesterol Occupancy Sites  Xavier Prasanna, Amitabha Chattopadhyay, Durba.
Chetan Poojari, Dequan Xiao, Victor S. Batista, Birgit Strodel 
Volume 102, Issue 1, Pages (January 2012)
Lipid Bilayer Pressure Profiles and Mechanosensitive Channel Gating
Dynamics of Active Semiflexible Polymers
Volume 112, Issue 2, Pages (January 2017)
Volume 112, Issue 12, Pages (June 2017)
The Structural Basis of Cholesterol Accessibility in Membranes
Volume 83, Issue 3, Pages (September 2002)
K.J. Tielrooij, D. Paparo, L. Piatkowski, H.J. Bakker, M. Bonn 
Satomi Matsuoka, Tatsuo Shibata, Masahiro Ueda  Biophysical Journal 
Philip J. Robinson, Teresa J.T. Pinheiro  Biophysical Journal 
Volume 105, Issue 9, Pages (November 2013)
Volume 74, Issue 1, Pages (January 1998)
Localization Precision in Stepwise Photobleaching Experiments
Volume 109, Issue 8, Pages (October 2015)
Yongli Zhang, Junyi Jiao, Aleksander A. Rebane  Biophysical Journal 
Volume 109, Issue 7, Pages (October 2015)
Phase Equilibria in DOPC/DPPC-d62/Cholesterol Mixtures
Influence of the Long-Chain/Short-Chain Amphiphile Ratio on Lateral Diffusion of PEG- Lipid in Magnetically Aligned Lipid Bilayers as Measured via Pulsed-Field-Gradient.
Atomic Detail Peptide-Membrane Interactions: Molecular Dynamics Simulation of Gramicidin S in a DMPC Bilayer  Dan Mihailescu, Jeremy C. Smith  Biophysical.
Volume 94, Issue 11, Pages (June 2008)
Volume 115, Issue 6, Pages (September 2018)
Volume 98, Issue 4, Pages (February 2010)
Emmanuel O. Awosanya, Alexander A. Nevzorov  Biophysical Journal 
Presentation transcript:

Volume 107, Issue 10, Pages 2274-2286 (November 2014) Area per Lipid and Cholesterol Interactions in Membranes from Separated Local-Field 13C NMR Spectroscopy  Avigdor Leftin, Trivikram R. Molugu, Constantin Job, Klaus Beyer, Michael F. Brown  Biophysical Journal  Volume 107, Issue 10, Pages 2274-2286 (November 2014) DOI: 10.1016/j.bpj.2014.07.044 Copyright © 2014 Biophysical Society Terms and Conditions

Figure 1 Site-specific 13C–1H RDCs are measured using a 2D DROSS spectrum for the case of the POPC/cholesterol (1:1) binary mixture at 30°C. (a) Selected recoupled powder patterns showing experimental (gray) and simulated (red) lineshapes. (b) Oblique view of the aliphatic fingerprint region of the DROSS spectrum of the binary system POPC/cholesterol. (c) A 2D plane of the spectrum shown in b. The 13C isotropic chemical shift (δ) spectrum is shown along F2 (the horizontal axis) (red). The peak separation of the Pake doublet yields the site-specific 13C-1H dipolar coupling along F1 (the vertical axis). Segmental |SCH| order parameter values are calculated as a function of peak position according to Eq. 2. To see this figure in color, go online. Biophysical Journal 2014 107, 2274-2286DOI: (10.1016/j.bpj.2014.07.044) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 2 SLF 13C NMR spectroscopy of membrane lipids provides site-specific RDCs in the liquid-crystalline phase. 2D DROSS spectra show isotropic chemical-shift projections in the F2 (horizontal) dimension and 1H-13C dipolar couplings in the F1 (vertical) dimension for POPC at 28°C (a) and EYSM at 48°C (b). The Pake lineshapes corresponding to the dipolar splitting for each carbon chemical-shift position are shown above the isotropic chemical-shift spectra. To see this figure in color, go online. Biophysical Journal 2014 107, 2274-2286DOI: (10.1016/j.bpj.2014.07.044) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 3 Segmental |SCH| order parameters are derived from SLF 13C NMR spectroscopy for lipid bilayers in the ld phase. Absolute order profiles are plotted with magnitude decreasing as a function of peak (carbon) index (i). Results are shown for DMPC (a), the sn-2 oleoyl chain of POPC (b), the sn-1 palmitoyl chain of POPC (c), and the sphingosine and palmitoyl chains of EYSM (d). Order parameters for the individual chains are not separately presented for DMPC and EYSM. See individual profiles for symbol codes. Relatively high order parameters for the EYSM sphingosine and palmitoyl chains indicate that it is less flexible than the other lipids in the liquid-crystalline (ld) state. The |SCH| order parameters represent the 13C-1H bond orientational distributions with respect to the membrane normal and are used to calculate the area per lipid within the bilayer. To see this figure in color, go online. Biophysical Journal 2014 107, 2274-2286DOI: (10.1016/j.bpj.2014.07.044) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 4 SLF 13C NMR spectroscopy gives segmental |SCH| order parameters that agree with 2H solid-state NMR-derived |SCD| order parameters. Data are shown for the sn-1 (a) and sn-2 (b) chains of DMPC-d54 at 50°C in the liquid-crystalline (ld) phase. The solid line represents a unit slope. Data for the C2 segment position are not included because of the different order parameters for the initial segment of the acyl chain. The error bars correspond to the standard deviations in the measured RDCs in multiple DROSS experiments. To see this figure in color, go online. Biophysical Journal 2014 107, 2274-2286DOI: (10.1016/j.bpj.2014.07.044) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 5 Segmental order parameter |SCH| profiles from SLF 13C NMR spectroscopy indicate a lipid-specific loss of conformational disorder due to cholesterol. Order profiles are plotted in terms of decreasing absolute magnitude for the sn-2 oleoyl chain of POPC (a), the sn-1 palmitoyl chain of POPC (b), the sn-2 sphingosine chain of EYSM (c), and the sn-1 palmitoyl chain of EYSM (d). Circles represent pure lipids and squares represent lipid mixtures with cholesterol (1:1). For POPC, data are shown at two temperatures, 28°C (gray-filled symbols) and 48°C (solid symbols), and for EYSM at 48°C. Note that upon adding cholesterol the |SCH| order parameters increase more in POPC than in EYSM. To see this figure in color, go online. Biophysical Journal 2014 107, 2274-2286DOI: (10.1016/j.bpj.2014.07.044) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 6 Bilayer structural parameters obtained from SLF 13C NMR spectroscopy agree with results from solid-state 2H NMR spectroscopy of lipids that have perdeuterated acyl groups. Parameter values obtained using 2H solid-state NMR are compared with those obtained using the SLF 13C NMR experiment DROSS for bilayer thickness, DB′ (a), and area per lipid, 〈A〉 (b). For DMPC and POPC bilayers, structural data are shown at temperatures of 30°C (solid circles) and 50°C (gray-filled circles), and at 28°C (squares) and 48°C (gray-filled squares), respectively. Cross-sectional lipid areas are calculated using the plateau |SCD| value in the case of 2H NMR and the highest |SCH| value of the acyl segments in the case of 13C NMR spectroscopy. The unit slope indicates excellent agreement of the two methods. Note that isotopic labeling is not required in the case of solid-state 13C NMR spectroscopy. The estimated error bars correspond to the standard deviations in the measured RDCs in multiple DROSS experiments. To see this figure in color, go online. Biophysical Journal 2014 107, 2274-2286DOI: (10.1016/j.bpj.2014.07.044) Copyright © 2014 Biophysical Society Terms and Conditions