Specifications for the JLEIC IR Magnets

Slides:



Advertisements
Similar presentations
Recirculating pass optics V.Ptitsyn, D.Trbojevic, N.Tsoupas.
Advertisements

Full-Acceptance Detector Integration at MEIC Vasiliy Morozov for MEIC Study Group Electron Ion Collider Users Meeting, Stony Brook University June 27,
Ion Collider Ring Design V.S. Morozov for MEIC study group MEIC Collaboration Meeting, JLab October 5-7, 2015.
Overview of IR Design V.S. Morozov 1, P. Brindza 1, A. Camsonne 1, Ya.S. Derbenev 1, R. Ent 1, D. Gaskell 1, F. Lin 1, P. Nadel-Turonski 1, M. Ungaro 1,
MEIC Detector and IR Integration Vasiliy Morozov, Charles Hyde, Pawel Nadel-Turonski MEIC Detector and IR Design Mini-Workshop, October 31, 2011.
IR-Design 0.44 m Q5 D5 Q4 90 m 10 mrad m 3.67 mrad 60 m m 18.8 m 16.8 m 6.33 mrad 4 m Dipole © D.Trbojevic 30 GeV e GeV p.
Interaction Region Design and Detector Integration V.S. Morozov for EIC Study Group at JLAB 2 nd Mini-Workshop on MEIC Interaction Region Design JLab,
Detector / Interaction Region Integration Vasiliy Morozov, Charles Hyde, Pawel Nadel-Turonski Joint CASA/Accelerator and Nuclear Physics MEIC/ELIC Meeting.
Compensation of Detector Solenoid G.H. Wei, V.S. Morozov, Fanglei Lin JLEIC Collaboration Meeting Spring, 2016.
E.C. AschenauerEIC INT Program, Seattle Week 81.
Full-Acceptance & 2 nd Detector Region Designs V.S. Morozov on behalf of the JLEIC detector study group JLEIC Collaboration Meeting, JLab March 29-31,
JLEIC Electron Collider Ring Design and Polarization
Interaction Region and Detector
MEIC Interaction Region & Tagging
FCC-ee IR magnetic element design – an update
Ion Collider Ring: Design and Polarization
JLEIC Forward Ion Detection Region
Large Booster and Collider Ring
Non-linear Beam Dynamics Studies for JLEIC Electron Collider Ring
Very Asymmetric Collider for Dark Matter Search below 1 GeV
First Look at Nonlinear Dynamics in the Electron Collider Ring
How to detect protons from exclusive processes
Error and Multipole Sensitivity Study for the Ion Collider Ring
Polarized Ion Beams with JLEIC
Ion-Side Small Angle Detection Forward, Far-Forward, & Ultra-Forward
Collider Ring Optics & Related Issues
Update on JLEIC Interaction Region Design
EIC Accelerator Collaboration Meeting
IR Magnet Layout/Design - JLEIC
Ion Collider Ring Chromatic Compensation and Dynamic Aperture
Yuri Nosochkov Yunhai Cai, Fanglei Lin, Vasiliy Morozov
Multipole Limit Survey of FFQ and Large-beta Dipole
Vertical Dogleg Options for the Ion Collider Ring
Electron Ring IP Region Optics
JLEIC Engineering Status
IR Beam Transport Status
Progress on Non-linear Beam Dynamic Study
Feasibility of Reusing PEP-II Hardware for MEIC Electron Ring
Fanglei Lin, Andrew Hutton, Vasiliy S. Morozov, Yuhong Zhang
Update on MEIC Nonlinear Dynamics Work
IR Magnet Design and Engineering Considerations
JLEIC High-Energy Ion IR Design: Options and Performance
Ion Collider Ring Using Superferric Magnets
Fanglei Lin, Yuhong Zhang JLEIC R&D Meeting, March 10, 2016
Status and plans for crab crossing studies at JLEIC
Alternative Ion Injector Design
JLEIC Magnet R&D Tim Michalski NP Community Panel Review of the EIC
Fanglei Lin, Yuri Nosochkov Vasiliy Morozov, Yuhong Zhang, Guohui Wei
Update on JLEIC Electron Ring Design
Multipole Limit Survey of FFQ and Large-beta Dipole
G. Wei, V.S. Morozov, Fanglei Lin
G.H. Wei, V.S. Morozov, Fanglei Lin Y. Nosochkov, M-H. Wang (SLAC)
Some of the Points Raised During my JLAB Visit
Fanglei Lin MEIC R&D Meeting, JLab, July 16, 2015
Compensation of Detector Solenoids
G.H. Wei, V.S. Morozov, Fanglei Lin Y. Nosochkov (SLAC), M-H. Wang
JLEIC Collider Rings’ Geometry Options (II)
Progress Update on the Electron Polarization Study in the JLEIC
Multipole Limit Survey of Large-beta Dipoles
Integration of Detector Solenoid into the JLEIC ion collider ring
Possibility of MEIC Arc Cell Using PEP-II Dipole
JLEIC Electron Ring Nonlinear Dynamics Work Plan
Upgrade on Compensation of Detector Solenoid effects
Crab Crossing Named #1 common technical risk (p. 6 of the report)
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
MEIC R&D Meeting, JLab, August 20, 2014
DYNAMIC APERTURE OF JLEIC ELECTRON COLLIDER
A TME-like Lattice for DA Studies
Error Sensitivity in MEIC
Compensation of Detector Solenoid Coherent Orbit Correction
Presentation transcript:

Specifications for the JLEIC IR Magnets V.S. Morozov on behalf of the JLEIC detector study group JLEIC Collaboration Meeting, JLab March 29-31, 2016 F. Lin

Detector Region Layout e- crab cavities ion crab cavities IP e- Compton polarimetry forward ion detection ions forward e- detection dispersion suppressor/ geometric match spectrometers Forward hadron spectrometer low-Q2 electron detection and Compton polarimeter p (top view in GEANT4) e ZDC

Interaction Region Ion IR magnets IP ions Quadrupoles: QFFB3_US, QFFB2_US, QFFB1_US, QFFB1, QFFB2, QFFB3 Spectrometer dipoles: SB1, SB2 SB1 IP QFFB2 QFFB1 QFFB3 SB1 QFFB1_US ions QFFB2_US QFFB3_US

IR Ion Magnet Parameters Assuming 100 GeV/c Parameters are determined primarily by detection requirements rather than beam dynamics Bottom-up study of multipole requirements in progress Note: parameters are still being fine-tune but no major changes Name Type Length [m] Good-field radius [cm] Inner radius [cm] Outer radius [cm] Min. beam separation [cm] Strength [T or T/m] Pole-tip field [T] QFFB3_US Quad [T/m] 1 3 4 12 36.0 -116 -4.6 QFFB2_US 1.5 26.5 149 6 QFFB1_US 1.2 2 10 18.0 -141 -4.2 SB1 Dipole [T] 17 24 25.0 -2 QFFB1 9 17.1 35.9 -88 -8 QFFB2 2.4 15.7 24.7 48.2 51 8 QFFB3 26.7 67.2 -35 -6 SB2 40 90 102 4.7

Interaction Region Electron IR magnets IP electrons Quadrupoles: QFFB4e, QFFB3e, QFFB2e, QFFB1e, QFFB1e_US, QFFB2e_US, QFFB3e_US QFFB1e_US IP QFFB1e QFFB3e_US QFFB3e electrons QFFB2e_US QFFB2e QFFB4e

IR Electron Magnet Parameters Assuming 10 GeV Parameters are determined primarily by beam size and available space Multipole tolerance study has not been done yet One has to consider effect of the solenoid fringe field Note: parameters are still being fine-tune but no major changes Name Type Length [m] Good-field radius [cm] Inner radius [cm] Outer radius [cm] Min. beam separation [cm] Strength [T/m] Pole-tip field [T] QFFB4e Quad 0.5 4 5 11 21 -3.1 -0.16 QFFB3e 0.58 15 47.9 2.39 QFFB2e 0.7 2 3 8 10.5 -57.7 -1.73 QFFB1e 0.4 1.2 6 24.4 0.49 QFFB1e_US 7 12 -43.9 -1.32 QFFB2e_US 10 16 45.5 2.28 QFFB3e_US 22 -16.4 -0.82