THE STUDY OF ACENAPHTHENE AND ITS COMPLEXATION WITH WATER

Slides:



Advertisements
Similar presentations
68th OSU International Symposium on Molecular Spectroscopy TH08
Advertisements

Microsolvation of  -propiolactone as revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski,
CHIRPED-PULSE FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF THE PROTOTYPICAL C-H…π INTERACTION: THE BENZENE…ACETYLENE WEAKLY BOUND DIMER Nathan W. Ulrich,
IDENTIFICATION OF THE CAGE, PRISM, AND BOOK ISOMERS OF WATER HEXAMER AND THE PREDICTED LOWEST ENERGY HEPTAMER AND NONAMER CLUSTERS BY BROADBAND ROTATIONAL.
Galen Sedo, Jamie L. Doran, Shenghai Wu, Kenneth R. Leopold Department of Chemistry, University of Minnesota A Microwave Determination of the Barrier to.
Chirped-Pulse Broadband Microwave Spectra and Structures of the OCS Trimer and Tetramer Luca Evangelisti, Cristobal Perez, Nathan A. Seifert, Brooks H.
The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.
Two-Dimensional Chirped-Pulse Fourier Transform Microwave Spectroscopy Amanda Shirar June 22, th OSU International Symposium on Molecular Spectroscopy.
Water clusters observed by chirped-pulse rotational spectroscopy: Structures and hydrogen bonding Cristobal Perez, Matt T. Muckle, Daniel P. Zaleski, Nathan.
1 Broadband Chirped-Pulse Fourier- Transform Microwave (CP-FTMW) Spectroscopic Investigation of the Structures of Three Diethylsilane Conformers Amanda.
DANIEL P. ZALESKI, JUSTIN L. NEILL, MATTHEW T. MUCKLE, AMANDA L. STEBER, NATHAN A. SEIFERT, AND BROOKS H. PATE Department of Chemistry, University of Virginia,
DANIEL P. ZALESKI, JUSTIN L. NEILL, AND BROOKS H. PATE Department of Chemistry, University of Virginia, McCormick Rd., P.O. Box , Charlottesville,
The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin.
1 Ab initio and Infrared Studies of Carbon Dioxide Containing Complex Zheng Su and Yunjie Xu Department of Chemistry, University of Alberta, Edmonton,
Chirped-pulse, FTMW spectroscopy of the lactic acid-H 2 O system Zbigniew Kisiel, a Ewa Białkowska-Jaworska, a Daniel P. Zaleski, b Justin L. Neill, b.
Volker Lutter, Laborastrophysik, Universität Kassel 69 th ISMS Champaign-Urbana, Illinois HIGH RESOLUTION INFRARED SPECTROSCOPY AND SEMI-EXPERIMENTAL STRUCTURES.
†) Currently at Department of Chemistry, University of Manitoba A Microwave Study of the HNO 3 -N(CH 3 ) 3 Complex Galen Sedo, † Kenneth R. Leopold Department.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Rotationally-Resolved Spectroscopy of the Bending Modes of Deuterated Water Dimer JACOB T. STEWART AND BENJAMIN J. MCCALL DEPARTMENT OF CHEMISTRY, UNIVERSITY.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
Structure Determination of Two Stereoisomers of Sevoflurane Dimer by CP-FTMW Spectroscopy Nathan A. Seifert, Cristobal Perez, Daniel P. Zaleski, Justin.
Perfluorobutyric acid and its monohydrate: a chirped pulse and cavity based Fourier transform microwave spectroscopic study Javix Thomas a, Agapito Serrato.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
The rotational spectra of helium- pyridine and hydrogen molecule- pyridine clusters Chakree Tanjaroon and Wolfgang Jäger.
NEW INSTRUMENTAL TOOLS FOR ADVANCED ASTROCHEMICAL APPLICATIONS Amanda L. Steber 1,2, Sabrina Zinn 1,2, Anouk Rijs 3, and Melanie Schnell 1,2 1 The Centre.
Broadband Microwave Spectroscopy to Study the Structure of Odorant Molecules and of Complexes in the Gas Phase Sabrina Zinn, Chris Medcraft, Thomas Betz,
Helen O. Leung, Mark D. Marshall & Joseph P. Messenger Department of Chemistry Amherst College Supported by the National Science Foundation.
CALIFORNIA INSTITUTE OF TECHNOLOGY PURE ROTATIONAL SPECTROSCOPY OF PANHs: 1,10-PHENANTHROLINE Brett A. McGuire, Ian A. Finneran, P. Brandon Carroll, &
Chirped-Pulse Microwave Spectroscopy in the Undergraduate Chemistry Curriculum Sydney Gaster, Taylor Hall, Sean Arnold, Deondre Parks, Gordon Brown Department.
Javix Thomas, Wolfgang Jäger, Yunjie Xu Department of Chemistry, University of Alberta Edmonton, Alberta, Canada ISMS, Medical Sciences Building 274, TE11,
Rotational Spectra of Adducts of Formaldehyde with Freons Qian Gou, 1 Gang Feng, 1 Luca Evangelisti, 1 Montserrat Vallejo-López, 2 Alberto Lesarri, 2 Walther.
CRISTOBAL PEREZ, MARINA SEKUTOR, ANDREY A
Max Planck Institute for the Structure and Dynamics of Matter
AMANDA L. STEBER, MARIYAM FATIMA, CRISTÓBAL PÉREZ, and MELANIE SCHNELL
Wei Li, Mingfei Zhou Fudan University , Shanghai, China
MEASURING CONFORMATIONAL ENERGY DIFFERENCES USING PULSED-JET MICROWAVE SPECTROSCOPY CAMERON M FUNDERBURK, SYDNEY A GASTER, TIFFANY R TAYLOR, GORDON G BROWN.
72nd International Symposium on Molecular Spectroscopy, 6/20/2017
Juliane Heitkämper, John C Mullaney, Nick Walker
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
Department of Chemistry *Department of Chemistry, Mt. Holyoke College,
Microwave and infrared spectra of urethane
72nd International Symposium on Molecular Spectroscopy (ISMS 2017)
Mark D. Marshall, Helen O. Leung, Craig J. Nelson & Leonard H. Yoon
International Symposium on Molecular Spectroscopy, 71st Meeting
Characterisation and Control of Cold Chiral Compounds
1Kanagawa Institute of Technology 3Georgia Southern University
Carlos Cabezas and Yasuki Endo
Wei Li, Mingfei Zhou Fudan University, Shanghai, China
MARIYAM FATIMA 1,2,3, CRISTÓBAL PÉREZ1,2,3 , MELANIE SCHNELL 1,2,3
L. Evangelisti,a,c C. Perez,b,c B.H. Patec
A.J. Barclay, S. Sheybani-Deloui, N. Moazzen-Ahmadi
Characterization of Intermolecular Interactions in the
G. S. Grubbs II*, S. A. Cooke⧧, and Stewart E. Novick*,
Jacob T. Stewart and Bradley M
Aimee Bell, Omar Mahassneh, James Singer,
M. Rezaei, J. George, L. Welbanks, and N. Moazzen-Ahmadi
The Effect of Protic Acid Identity on the Structures of Complexes with Vinyl Chloride: Fourier Transform Microwave Spectroscopy and Molecular Structure.
Microwave spectra of 1- and 2-bromobutane
Mahdi Kamaee and Jennifer van Wijngaarden
CHIRALITY DETERMINATION FROM PULSED-JET FOURIER TRANSFORM
Fourier transform microwave spectra of n-butanol and isobutanol
Terahertz VRT Spectroscopy of the Water Tetramer-d8: Combined Analysis of Vibrational Bands at 4.1 THz and 2.0 THz Wei Lin, Jia-xiang Han, Lynelle K.
Ashley M. Anderton, Cori L. Christenholz, Rachel E. Dorris, Rebecca A
The rotational spectrum of the urea isocyanic acid complex
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
Daniel A. Obenchain, Derek S. Frank, Stewart E. Novick,
Wafaa Fawzy Murray State University (MSU)
Halogen bonding vs hydrogen bonding: CHF2INH3 vs CHF2IN(CH3)3
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
Presentation transcript:

THE STUDY OF ACENAPHTHENE AND ITS COMPLEXATION WITH WATER AMANDA L. STEBER, CRISTOBAL PEREZ, BERHANE TEMELSO, GEORGE C. SHIELDS, ANOUK M. RIJS, ZBIGNIEW KISIEL, and MELANIE SCHNELL Styling: MPSD color: 44-89-160

Introduction PAH Hypothesis: No identification of an individual PAH Used to explain UIR bands in the mid IR from 3.3 – 12.7 microns Postulates PAHs are the most abundant molecules in space after H2 and CO An estimated 20% of the total galactic carbon is locked in PAHs1 Believed to help form ice grains No identification of an individual PAH Cyclic water trimer has only been observed once in microwave spectroscopy2 due to tunneling effects 1 Joblin, C. & Mulas, G. EAS Publ. Ser. 35, 133–152 (2009). 2 Arunan, E., Emilsson, T. & Gutowsky, H. S. J. Am. Chem. Soc. 116, 8418–8419 (1994).

Instrumentation 2-8 GHz Chirped pulse Fourier transform microwave spectrometer Nozzle heated to between ~100-115 External water reservoir 1:1 water mixtures for 16O:18O mixtures Brown, G. G. et al. Rev. Sci. Instrum. 79, 53103 (2008). Schmitz, D., Alvin Shubert, V., Betz, T. & Schnell, M. J. Mol. Spectrosc. 280, 77–84 (2012).

Acenaphthene Monomer 800,000 acquisitions 2.5 bar neon S. Thorwirth et al. Astrophys. J., 662, 1309 (2007).

Acenaphthene – water complexes 2.5 million acquisitions 3 bar neon

Acenaphthene – water complexes 2.5 million acquisitions 3 bar neon

Acenaphthene – water structures Calculations: MP2/aug-cc-pVTZ

Acenaphthene – water structures r0 vs rs structures r0 vs ab initio: RMSD = 0.12Å

3water complexes Arunan, E., Emilsson, T. & Gutowsky, H. S. J. Am. Chem. Soc. 116, 8418–8419 (1994). Keutsch, F. N., Cruzan, J. D. & Saykally, R. J. Chem. Rev. 103, 2533–2578 (2003). Ouyang, B., Starkey, T. G. & Howard, B. J. J. Phys. Chem. A 111, 6165–6175 (2007). Pérez, C. et al. Angew. Chem. Int. Ed. 54, 979–982 (2015). Pérez, C. et al. J. Phys. Chem. Lett. 7, 154–160 (2016).

Cyclic (H2O)3 comparison Ace - (H2O)3 Complex Ab initio r0 structure rs structure   O-O distance (Å) A-B 2.782 2.790 2.810 (10) 2.812 (30) B-C 2.766 2.856 (9) 2.851 (11) A-C 2.891 2.953 (10) 2.942 (28) Keutsch, F. N., Cruzan, J. D. & Saykally, R. J. Chem. Rev. 103, 2533–2578 (2003).

Binding Energies SAPT2+3/6-311++G** MP2 ΔEelst ΔEexch ΔEind ΔEdisp ΔEtot (H2O)2 -8.90 8.17 -2.40 -1.35 -4.47   Benzene-H2O -2.98 3.87 -1.04 -2.34 -2.49 -3.28 Ace-H2O -4.81 6.62 -1.22 -4.23 -3.64 -4.32 Ace-(H2O)2 --- -13.29 Ace-(H2O)3 -24.99

(Ace)2 – H2O complex 18O

ΔE between rank 227 and rank 399 (Ace)2 – H2O complex Constrained Experimental M062x/ 6-31++G** 6-311++G** MP2/ aug-cc-pVDZ   2A1W 2A1W_18O hf3c rank 227 rank 399 A (MHz) 365.12749(22) 362.68191(18) 355 349 B (MHz) 204.00890(17) 200.12250(16) 215 217 245 C (MHz) 181.69642(17) 179.14017(17) 194 196 236 ΔJ (kHz) 0.0130(12) 0.0139(11) ΔJK (kHz) 0.9645(54) 1.3173(51) ΔK (kHz) -0.9213(46) -1.2583(46) δJ (kHz) --- δK (kHz) -1.129(23) -1.505(25) # lines 83 88 σ (kHz) 4.44 4.29 ΔE between rank 227 and rank 399 M062x: ΔE = 0.46 kcal/mol MP2: ΔE = 2.84 kcal/mol

(Ace)2 – H2O complex Experimental M062x/ 6-31++G** 6-311++G** Constrained MP2/ aug-cc-pVDZ   2A1W 2A1W_18O hf3c rank 227 rank 399 A (MHz) 365.12749(22) 362.68191(18) 355 349 B (MHz) 204.00890(17) 200.12250(16) 215 217 245 C (MHz) 181.69642(17) 179.14017(17) 194 196 236 hf3c Rank 227 Rank 399

(Ace)2 – H2O complex Calculations: M062x/6-31++G**

Conclusions Acenaphthene KRA structure determined Ace – (H2O)n complexes observed and structure determined (Ace)2 – H2O observed Distorted cyclic water trimer observed for the three water complex Implications for ice grain formation

Thank you for your attention! Acknowledgement Thank you for your attention! Funding: CUI – Louise Johnson Fellowship