LCLS Longitudinal Feedback and Stability Requirements

Slides:



Advertisements
Similar presentations
FEL Beam Dynami cs FEL Beam Dynamics T. Limberg Short Bunches at FLASH.
Advertisements

Nominal and no CSR (R 56-1 = 55 mm, R 56-2 = 59 mm, R 56-3 = 0) L1 phase = 21 deg, V 3.9 = 55 MV CSR OFF BC3 OFF Elegant Tracking  z1 = mm (post.
BC System – Review Options ● BC2 working point (energy-charge-compr.) ● 2BC (rf-rf-bc-rf-bc-rf) ● table: 2BC (rf-rf-bc-rf-bc-rf) dogleg + 2BC (rf-dog-rf-rf-bc-rf-bc-rf)
1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
P. Emma LCLS FAC 12 Oct Comments from LCLS FAC Meeting (April 2004): J. Roßbach:“How do you detect weak FEL power when the.
R. Akre, P. Emma, P. Krejcik LCLS April 29, 2004 LCLS RF Stability Requirements LCLS Requirements The SLAC Linac.
Juhao Wu Feedback & Oct. 12 – 13, 2004 Juhao Wu Stanford Linear Accelerator Center LCLS Longitudinal Feedback with CSR as Diagnostic.
R. Akre XFEL Short Bunch Measurement and July 26, 2004 LCLS Drive Laser Timing Stability Measurements XFEL Short Bunch Measurement.
Feedback and CSR Miniworkshop on XFEL Short Bunch, SLAC, July 26 – 30, 2004 Juhao Wu, SLAC 1 Juhao Wu Stanford Linear Accelerator.
Feedback and CSR Miniworkshop on XFEL Short Bunch, SLAC, July 26 – 30, 2004 Juhao Wu, SLAC 1 Juhao Wu Stanford Linear Accelerator.
E. Bong, SLACLCLS FAC Meeting - April 29, 2004 Linac Overview E. Bong LCLS FAC Meeting April 29, 2004 LCLS.
RF Systems and Stability Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center.
FEL Beam Dynami cs FEL Beam Dynamics T. Limberg FEL driver linac operation with very short electron bunches.
ASTRA Injector Setup 2012 Julian McKenzie 17/02/2012.
S2E in LCLS Linac M. Borland, Lyncean Technologies, P. Emma, C. Limborg, SLAC.
SPPS, Beam stability and pulse-to-pulse jitter Patrick Krejcik For the SPPS collaboration Zeuthen Workshop on Start-to-End Simulations of X-ray FEL’s August.
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
A bunch compressor design and several X-band FELs Yipeng Sun, ARD/SLAC , LCLS-II meeting.
LCLS LLRF System October 10-13, 2005 LLRF05 B. Hong, R. Akre, A. Hill, D. Kotturi, H. Schwarz SLAC, Stanford, Menlo Park, CA 94025, USA Work supported.
J. Wu J. Wu working with T.O. Raubenheimer, J. Qiang (LBL), LCLS-II Accelerator Physics meeting April 11, 2012 Study on the BC1 Energy Set Point LCLS-II.
P. Krejcik LINAC 2004 – Lübeck, August 16-20, 2004 LCLS - Accelerator System Overview Patrick Krejcik on behalf of the LCLS.
‘S2E’ Study of Linac for TESLA XFEL P. Emma SLAC  Tracking  Comparison to LCLS  Re-optimization  Tolerances  Jitter  CSR Effects.
J. Wu J. Wu working with T.O. Raubenheimer LCLS-II Accelerator Physics meeting May 09, 2012 Study on the BC1 Energy Set Point LCLS-II Accel. Phys., J.
Twin bunches at FACET-II Zhen Zhang, Zhirong Huang, Ago Marinelli … FACET-II accelerator physics workshop Oct. 12, 2015.
X-band Based FEL proposal
PAL-XFEL Commissioning Plan ver. 1.1, August 2015 PAL-XFEL Beam Dynamics Group.
SABER Longitudinal Tracking Studies P. Emma, K. Bane Mar. 1, 2006
LSC/CSR Instability Introduction (origin of the instability) CSR/LSC
A 6 GeV Compact X-ray FEL (CXFEL) Driven by an X-Band Linac
Beam dynamics for an X-band LINAC driving a 1 keV FEL
Robert Bosch, Kevin Kleman and the WiFEL team
Sara Thorin, MAX IV Laboratory
Cutting Beam Horns in BC1
Short pulse, low charge LCLS operation
X-band FEL beam dynamics issues
Gu Qiang For the project team
Beam-Based Feedback in LCLS-II
Limitations of Electron Beam Conditioning in Free-Electron Lasers
CSR Benchmark Test-Case Results
LCLS Linac Update Brief Overview L1 & BC1 Progress LTU & E-Dump Status Continuing Resolution Impact.
Time-Resolved Images of Coherent Synchrotron Radiation Effects
LLRF Control System Outline Scope Requirements Design Considerations
Laser assisted emittance exchange to reduce the X-ray FEL size
Simulation Calculations
Advanced Research Electron Accelerator Laboratory
LCLS Drive Laser Timing Stability Measurements
Z. Huang LCLS Lehman Review May 14, 2009
Two-bunch self-seeding for narrow-bandwidth hard x-ray FELs
LCLS RF Stability Requirements
Linac/BC1 Commissioning P
LCLS Linac Overview E. Bong Lehman Review August 10, 2004
Linac Coherent Light Source (LCLS) LLRF Preliminary Design Review LLRF Monitor and Control System September 26, 2005 Ron Akre.
Linac (WBS 1.2.2) Vinod Bharadwaj April 23, 2002
Design of Compression and Acceleration Systems Technical Challenges
LCLS Tracking Studies CSR micro-bunching in compressors
Modified Beam Parameter Range
Linac Diagnostics Patrick Krejcik, SLAC April 24, 2002
Injector Experimental Results John Schmerge, SSRL/SLAC April 24, 2002
Linac Physics, Diagnostics, and Commissioning Strategy P
Breakout Sessions SC1/SC2 – Accelerator Physics
LCLS FEL Parameters Heinz-Dieter Nuhn, SLAC / SSRL April 23, 2002
Breakout Session SC5 – Control Systems
Operational Experience with LCLS RF systems
Introduction to Free Electron Lasers Zhirong Huang
Proposal for Smith-Purcell radiation experiment at SPARC_LAB
Linac Design Update P. Emma LCLS DOE Review May 11, 2005 LCLS.
LCLS Longitudinal Feedback System and Bunch Length Monitor Juhao Wu Stanford Linear Accelerator Center LCLS DOE Review, February 08, 2006 LCLS longitudinal.
Electron Optics & Bunch Compression
Physics Update P. Emma FAC Meeting October 27, 2005 LCLS.
S2E Meeting on Yauhen Kot.
Presentation transcript:

LCLS Longitudinal Feedback and Stability Requirements P. Emma LLRF Review November 23, 2005 LCLS

Critical LCLS Accelerator Parameters Final energy 13.6 GeV (stable to 0.1%) Final peak current 3.4 kA (stable to 12%) Transverse emittance 1.2 mm (stable to 5%) Final energy spread 10-4 (stable to 10%) Bunch arrival time (stable to 150 fs) (stability specifications quoted as rms)

FEL Power Sensitivity to e- Beam 12% DIpk/Ipk  20% DP/P 0.1% DE/E  0.2% Dlr/lr

Electron Bunch Compression d  DE/E d d under-compression szi ‘chirp’ z z z sz sdi V = V0sin(kz) Dz = R56d RF Accelerating Voltage Path-Length Energy- Dependent Beamline

Compression Stability d Df d z RF phase jitter becomes bunch length jitter… Compression factor:

Phase and Bunch Length Stability Example (not LCLS)

Machine Schematic with Parameters 6 MeV z  0.83 mm   0.05 % 135 MeV z  0.83 mm   0.10 % 250 MeV z  0.19 mm   1.6 % 4.30 GeV z  0.022 mm   0.71 % 13.6 GeV z  0.022 mm   0.01 % Linac-X L =0.6 m rf= -160 rf gun 23-m Linac-1 L 9 m rf  -25° Linac-2 L 330 m rf  -41° Linac-3 L 550 m rf  0° Linac-0 L =6 m undulator L =130 m ...existing linac 21-1b 21-1d X 21-3b 24-6d 25-1a 30-8c BC1 L 6 m R56 -39 mm BC2 L 22 m R56 -25 mm DL1 L 12 m R56 0 LTU L =275 m R56  0 1 X-klys. 3 klystrons 1 klystron 26 klystrons 45 klystrons SLAC linac tunnel research yard

Correlated or Uncorrelated Errors? Suppose the mean RF phase of all 26 Linac-2 klystrons changes by: 0.21°  |DIpk/Ipk|  12% This may arise statistically with 26 random uncorrelated phase errors with rms spread of: f21/2 = 0.21°261/2 = 1.07°, or with 26 identical phase errors. Since we don’t fully understand the correlations, we choose the conservative (smallest) tolerance of 0.21° rms/klys. and then reduce this by ~N, where N (=12) is the number of major error sources.

Phase, Amplitude, and Charge Sensitivities parameter |DE/E0| = 0.1% |DI/I0| = 12% |Dtf| = 100 fs unit Dti 1.6 4.4 1.5 psec DQ/Q0 46 5.2 24 % Df0 3.5 0.65 5.9 deg-S DV0/V0 0.32 0.24 0.95 Df1 0.17 1.0 DV1/V1 0.29 0.25 0.78 DfX 5.5 1.4 7.6 deg-X DVX/VX 2.0 1.2 6.3 Df2 0.54 0.21 0.084 DV2/V2 1.1 0.13 Df3 0.35 24.8 15 DV3/V3 0.15 5.7 8.6

Longitudinal Fast-Jitter Tolerance Budget tolerances are rms values X-band X- 0.50 laser timing (w.r.t. RF)  laser energy  mean phase of 2 klys.  1 klys.  1 X-klys.  mean phase of 26 klys.  mean phase of 45 klys.  mean amp. of 2 klys.  1 klys.  1 X-klys.  mean amp. of 26 klys.  mean amp. of 45 klys. 

Jitter Simulations (Particle Tracking) 0.09% 0.004% Lg 96 fs Pout 10%

LCLS Longitudinal Beam-Based Feedback (stabilizes beam for jitter frequencies < 10 Hz @ 120-Hz rep-rate) L0 gun L3 L2 X DL1 BC1 BC2 DL2 L1 sz1 d1 1 V1 sz2 d2 2 V2 d3 V3 d0 V0 BPM CSR detector J. Wu, et al., PAC’05, May 16-20, 2005, Knoxville, TN.

CSR Relative Bunch Length Monitor Red curve: Gaussian Black curve: Uniform Blue curve: ‘Real’ J. Wu, et al., PAC’05, May 16-20, 2005, Knoxville, TN.

LCLS Feedback Performance (use CSR P/P) feedback off DIpk/Ipk0 (%) feedback on J. Wu (undulator entrance)

Feedback System Bode Plot at 120 Hz J. Wu Define fast-jitter as variations faster than 2 seconds Slow drift occurs on time-scales > 2 seconds (to 24+ hr)

Slow Drift Tolerance Limits (Top 4 rows for De/e < 5%, bottom 4 limited by feedback dynamic range) Gun-Laser Timing 2.4* deg-S Bunch Charge 3.2 % Gun RF Phase 2.3 Gun Relative Voltage 0.6 L0,1,X,2,3 RF Phase (approx.) 5 L0,1,X,2,3 RF Voltage (approx.) (Tolerances are peak values, not rms) * for synchronization, this tolerance might be set to 1 ps (without arrival-time measurement)

L1 adjustment: phase +2.1o, voltage -2.1% Compensate X-band Phase Step Error... jx (deg) x-band phase LX phase error = 5o final energy final peak current L1 adjustment: phase +2.1o, voltage -2.1% final arrival time J. Wu

Gun Timing Jitter and Energy Feedback Dtf Dt0 Dt0 E > E0 E = E0 Dtf = Dt0 without energy feedback with energy feedback