C second, objective-c, Go up!

Slides:



Advertisements
Similar presentations
Lecturer PSOE Dan Garcia
Advertisements

CENG 311 Decisions in C/Assembly Language
Lecture 13: 10/8/2002CS170 Fall CS170 Computer Organization and Architecture I Ayman Abdel-Hamid Department of Computer Science Old Dominion University.
Goal: Write Programs in Assembly
4.
Review of the MIPS Instruction Set Architecture. RISC Instruction Set Basics All operations on data apply to data in registers and typically change the.
CPS3340 COMPUTER ARCHITECTURE Fall Semester, /15/2013 Lecture 11: MIPS-Conditional Instructions Instructor: Ashraf Yaseen DEPARTMENT OF MATH & COMPUTER.
ECE 15B Computer Organization Spring 2010 Dmitri Strukov Lecture 5: Data Transfer Instructions / Control Flow Instructions Partially adapted from Computer.
CS1104 – Computer Organization PART 2: Computer Architecture Lecture 5 MIPS ISA & Assembly Language Programming.
Computer Architecture CSCE 350
cs61c L5 Decisions 9/13/00 1 CS61C - Machine Structures Lecture 5 - Decisions in C/Assembly Language September 13, 2000 David Patterson
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 6 – Introduction to MIPS Data Transfer & Decisions I Pieter Abbeel’s recent.
Chap.2: Instructions: Language of the computer Jen-Chang Liu, Spring 2006 Adapted from
CS61C L09 Introduction to MIPS: Data Transfer & Decisions I (1) Garcia © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS61C L6 Intro MIPS ; Load & Store (1) Garcia, Fall 2005 © UCB Hate EMACS? Love EMACS? Richard M. Stallman, a famous proponent of open- source software,
CS61CL L03 MIPS I: Registers, Memory, Decisions (1) Huddleston, Summer 2009 © UCB Jeremy Huddleston inst.eecs.berkeley.edu/~cs61c CS61CL : Machine Structures.
CS61C L10 Introduction to MIPS : Decisions II (1) Garcia, Fall 2006 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
Normal C Memory Management °A program’s address space contains 4 regions: stack: local variables, grows downward heap: space requested for pointers via.
CS 61C L09 Introduction to MIPS: Data Transfer & Decisions I (1) Garcia, Fall 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
Elec2041 lec-11-mem-I.1 Saeid Nooshabadi COMP 3221 Microprocessors and Embedded Systems Lecture 11: Memory Access - I
Lecture 4: Loads, Logic, Loops. Review Memory is byte-addressable, but lw and sw access one word at a time. These instructions transfer the contents of.
CS61C L7 MIPS Decisions (1) Garcia, Fall 2005 © UCB Lecturer PSOE, new dad Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C.
CS61C L10 Introduction to MIPS : Decisions II (1) Garcia, Spring 2007 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS61C L7 MIPS: Load & Store, Decisions (1) Chae, Summer 2008 © UCB Albert Chae, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture.
CS61C L7 MIPS Decisions (1) Beamer, Summer 2007 © UCB Scott Beamer, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #7 – MIPS.
CS 61C L07 MIPS Memory (1) A Carle, Summer 2005 © UCB inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #7: MIPS Memory & Decisions.
Lecture 5 Sept 14 Goals: Chapter 2 continued MIPS assembly language instruction formats translating c into MIPS - examples.
CS1104 Assembly Language: Part 1
Data Transfer & Decisions I (1) Fall 2005 Lecture 3: MIPS Assembly language Decisions I.
CS61C L09 Introduction to MIPS : Data Transfer and Decisions (1) Garcia, Spring 2007 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
More decisions and logic (1) Fall 2010 Lecture 4: Loads, Logic, Loops.
9/29: Lecture Topics Memory –Addressing (naming) –Address space sizing Data transfer instructions –load/store on arrays on arrays with variable indices.
Intel has developed a new technique to generate random numbers that is suitable for integration directly into the CPU! This circuit can turn out 2.4 billion.
Topic 8: Data Transfer Instructions CSE 30: Computer Organization and Systems Programming Winter 2010 Prof. Ryan Kastner Dept. of Computer Science and.
COSC 2021: Computer Organization Instructor: Dr. Amir Asif Department of Computer Science York University Handout # 3: MIPS Instruction Set I Topics: 1.
Chapter 2 Decision-Making Instructions (Instructions: Language of the Computer Part V)
Computer Architecture CSE 3322 Lecture 3 Assignment: 2.4.1, 2.4.4, 2.6.1, , Due 2/3/09 Read 2.8.
Assembly Variables: Registers Unlike HLL like C or Java, assembly cannot use variables – Why not? Keep Hardware Simple Assembly Operands are registers.
CSCI-365 Computer Organization Lecture Note: Some slides and/or pictures in the following are adapted from: Computer Organization and Design, Patterson.
CSCI-365 Computer Organization Lecture Note: Some slides and/or pictures in the following are adapted from: Computer Organization and Design, Patterson.
MIPS: Load & Store, Decisions. Memory management review Three 3’s Picking blocks off free list  best-, first-, next-fit Attempts to solve external fragmentation.
MIPS Instruction Set Advantages
CS2100 Computer Organisation
Introduction Words of a computer’s language are called its instructions Its vocabulary is its instruction set. Goal: Find a language that makes it easy.
Morgan Kaufmann Publishers
MIPS Coding Continued.
RISC Concepts, MIPS ISA Logic Design Tutorial 8.
Lecturer SOE Dan Garcia
CS/COE0447 Computer Organization & Assembly Language
Lecturer PSOE Dan Garcia
Computer Architecture (CS 207 D) Instruction Set Architecture ISA
CS170 Computer Organization and Architecture I
Instructions - Type and Format
Lecture 4: MIPS Instruction Set
ECE232: Hardware Organization and Design
Lecturer SOE Dan Garcia
Part II Instruction-Set Architecture
Computer Instructions
3.
COMS 361 Computer Organization
COMS 361 Computer Organization
Instructions in Machine Language
COMS 361 Computer Organization
March 2006 Saeid Nooshabadi
MIPS Assembly.
MIPS Coding Continued.
MIPS assembly.
9/27: Lecture Topics Memory Data transfer instructions
MIPS Processor.
MIPS instructions.
Presentation transcript:

C second, objective-c, Go up! inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 9 – Introduction to MIPS Data Transfer & Decisions I 2010-02-08 Lecturer SOE Dan Garcia Hi to Jon Cappella from Denver, CO C second, objective-c, Go up! Since 2001, the TIOBE programming community index has been charting the populatiry of programming languages (they use search engines). Note it isn’t calculating the best or most lines of code. www.tiobe.com/index.php/content/paperinfo/tpci/

Review In MIPS Assembly Language: New Instructions: New Registers: Registers replace variables One Instruction (simple operation) per line Simpler is Better, Smaller is Faster New Instructions: add, addi, sub New Registers: C Variables: $s0 - $s7 Temporary Variables: $t0 - $t7 Zero: $zero

Assembly Operands: Memory C variables map onto registers; what about large data structures like arrays? 1 of 5 components of a computer: memory contains such data structures But MIPS arithmetic instructions only operate on registers, never directly on memory. Data transfer instructions transfer data between registers and memory: Memory to register Register to memory

Anatomy: 5 components of any Computer Registers are in the datapath of the processor; if operands are in memory, we must transfer them to the processor to operate on them, and then transfer back to memory when done. Computer Processor Devices Memory Control (“brain”) Input Store (to) That is, any computer, no matter how primitive or advance, can be divided into five parts: 1. The input devices bring the data from the outside world into the computer. 2. These data are kept in the computer’s memory until ... 3. The datapath request and process them. 4. The operation of the datapath is controlled by the computer’s controller. All the work done by the computer will NOT do us any good unless we can get the data back to the outside world. 5. Getting the data back to the outside world is the job of the output devices. The most COMMON way to connect these 5 components together is to use a network of busses. Datapath Registers Output Load (from) These are “data transfer” instructions…

Data Transfer: Memory to Reg (1/4) To transfer a word of data, we need to specify two things: Register: specify this by # ($0 - $31) or symbolic name ($s0,…,$t0,…) Memory address: more difficult Think of memory as a single one-dimensional array, so we can address it simply by supplying a pointer to a memory address. Other times, we want to be able to offset from this pointer. Remember: “Load FROM memory”

Data Transfer: Memory to Reg (2/4) To specify a memory address to copy from, specify two things: A register containing a pointer to memory A numerical offset (in bytes) The desired memory address is the sum of these two values. Example: 8($t0) specifies the memory address pointed to by the value in $t0, plus 8 bytes

Data Transfer: Memory to Reg (3/4) Load Instruction Syntax: 1 2,3(4) where 1) operation name 2) register that will receive value 3) numerical offset in bytes 4) register containing pointer to memory MIPS Instruction Name: lw (meaning Load Word, so 32 bits or one word are loaded at a time)

Data Transfer: Memory to Reg (4/4) Data flow Example: lw $t0,12($s0) This instruction will take the pointer in $s0, add 12 bytes to it, and then load the value from the memory pointed to by this calculated sum into register $t0 Notes: $s0 is called the base register 12 is called the offset offset is generally used in accessing elements of array or structure: base reg points to beginning of array or structure (note offset must be a constant known at assembly time)

Data Transfer: Reg to Memory Also want to store from register into memory Store instruction syntax is identical to Load’s MIPS Instruction Name: sw (meaning Store Word, so 32 bits or one word is stored at a time) Example: sw $t0,12($s0) This instruction will take the pointer in $s0, add 12 bytes to it, and then store the value from register $t0 into that memory address Remember: “Store INTO memory” Data flow

Pointers v. Values Key Concept: A register can hold any 32-bit value. That value can be a (signed) int, an unsigned int, a pointer (memory addr), and so on E.g., If you write: add $t2,$t1,$t0 then $t0 and $t1 better contain values that can be added E.g., If you write: lw $t2,0($t0) then $t0 better contain a pointer Don’t mix these up!

Addressing: Byte vs. Word Every word in memory has an address, similar to an index in an array Early computers numbered words like C numbers elements of an array: Memory[0], Memory[1], Memory[2], … Computers needed to access 8-bit bytes as well as words (4 bytes/word) Today machines address memory as bytes, (i.e., “Byte Addressed”) hence 32- bit (4 byte) word addresses differ by 4 Memory[0], Memory[4], Memory[8] Called the “address” of a word

Compilation with Memory What offset in lw to select A[5] in C? 4x5=20 to select A[5]: byte v. word Compile by hand using registers: g = h + A[5]; g: $s1, h: $s2, $s3: base address of A 1st transfer from memory to register: lw $t0,20($s3) # $t0 gets A[5] Add 20 to $s3 to select A[5], put into $t0 Next add it to h and place in g add $s1,$s2,$t0 # $s1 = h+A[5]

Notes about Memory Pitfall: Forgetting that sequential word addresses in machines with byte addressing do not differ by 1. Many an assembly language programmer has toiled over errors made by assuming that the address of the next word can be found by incrementing the address in a register by 1 instead of by the word size in bytes. Also, remember that for both lw and sw, the sum of the base address and the offset must be a multiple of 4 (to be word aligned)

More Notes about Memory: Alignment MIPS requires that all words start at byte addresses that are multiples of 4 bytes Called Alignment: objects fall on address that is multiple of their size Last hex digit of address is: 3 2 1 0 Aligned Not 0, 4, 8, or Chex 1, 5, 9, or Dhex 2, 6, A, or Ehex 3, 7, B, or Fhex

Role of Registers vs. Memory What if more variables than registers? Compiler tries to keep most frequently used variable in registers Less common variables in memory: spilling Why not keep all variables in memory? Smaller is faster: registers are faster than memory Registers more versatile: MIPS arithmetic instructions can read 2, operate on them, and write 1 per instruction MIPS data transfer only read or write 1 operand per instruction, and no operation

Administrivia Project 1 due on Saturday Other things to announce?

So Far... All instructions so far only manipulate data…we’ve built a calculator of sorts. In order to build a computer, we need ability to make decisions… C (and MIPS) provide labels to support “goto” jumps to places in code. C: Horrible style; MIPS: Necessary! Heads up: pull out some papers and pens, you’ll do an in-class exercise!

C Decisions: if Statements 2 kinds of if statements in C if (condition) clause if (condition) clause1 else clause2 Rearrange 2nd if into following: if (condition) goto L1; clause2; goto L2; L1: clause1; L2: Not as elegant as if-else, but same meaning

MIPS Decision Instructions Decision instruction in MIPS: beq register1, register2, L1 beq is “Branch if (registers are) equal” Same meaning as (using C): if (register1==register2) goto L1 Complementary MIPS decision instruction bne register1, register2, L1 bne is “Branch if (registers are) not equal” Same meaning as (using C): if (register1!=register2) goto L1 Called conditional branches

MIPS Goto Instruction beq $0,$0,label In addition to conditional branches, MIPS has an unconditional branch: j label Called a Jump Instruction: jump (or branch) directly to the given label without needing to satisfy any condition Same meaning as (using C): goto label Technically, it’s the same effect as: beq $0,$0,label since it always satisfies the condition.

Compiling C if into MIPS (1/2) Exit i == j? f=g+h f=g-h (false) i != j (true) i == j Compile by hand if (i == j) f=g+h; else f=g-h; Use this mapping: f: $s0 g: $s1 h: $s2 i: $s3 j: $s4

Compiling C if into MIPS (2/2) Exit i == j? f=g+h f=g-h (false) i != j (true) i == j Compile by hand if (i == j) f=g+h; else f=g-h; Final compiled MIPS code: beq $s3,$s4,True # branch i==j sub $s0,$s1,$s2 # f=g-h(false) j Fin # goto Fin True: add $s0,$s1,$s2 # f=g+h (true) Fin: Note: Compiler automatically creates labels to handle decisions (branches). Generally not found in HLL code.

Peer Instruction We want to translate *x = *y into MIPS (x, y ptrs stored in: $s0 $s1) 1: add $s0, $s1, zero 2: add $s1, $s0, zero 3: lw $s0, 0($s1) 4: lw $s1, 0($s0) 5: lw $t0, 0($s1) 6: sw $t0, 0($s0) 7: lw $s0, 0($t0) 8: sw $s1, 0($t0) a) 1 or 2 b) 3 or 4 c) 56 d) 65 e) 78 Answer: [correct=c, 5->6] We must first load the contents of y’s pointee into a temp variable [$t0], which is 5. Then we have to store $t0 back into x’s pointee, which is 6.

“And in Conclusion…” Memory is byte-addressable, but lw and sw access one word at a time. A pointer (used by lw and sw) is just a memory address, we can add to it or subtract from it (using offset). A Decision allows us to decide what to execute at run-time rather than compile- time. C Decisions are made using conditional statements within if, while, do while, for. MIPS Decision making instructions are the conditional branches: beq and bne. New Instructions: lw, sw, beq, bne, j