Quantum State and Process Measurement and Characterization

Slides:



Advertisements
Similar presentations
Henry Haselgrove School of Physical Sciences University of Queensland
Advertisements

Quantum Logic and Quantum gates with Photons
Quantum Computing via Local Control Einat Frishman Shlomo Sklarz David Tannor.
Entanglement-enhanced communication over a correlated-noise channel
Quantum Computing MAS 725 Hartmut Klauck NTU
Byron Smith December 11, What is Quantum State Tomography? 2. What is Bayesian Statistics? 1.Conditional Probabilities 2.Bayes’ Rule 3.Frequentist.
Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Lecture 11 (2005) Richard Cleve DC 3524
Quantum Information Stephen M. Barnett University of Strathclyde The Wolfson Foundation.
Quantum random walks Andre Kochanke Max-Planck-Institute of Quantum Optics 7/27/2011.
1 Multiphoton Entanglement Eli Megidish Quantum Optics Seminar,2010.
DENSITY MATRICES, traces, Operators and Measurements
QEC’07-1 ASF 6/13/2015 MIT Lincoln Laboratory Channel-Adapted Quantum Error Correction Andrew Fletcher QEC ‘07 21 December 2007.
Analyse de la cohérence en présence de lumière partiellement polarisée François Goudail Laboratoire Charles Fabry de l’Institut d’Optique, Palaiseau (France)
Solid state realisation of Werner quantum states via Kondo spins Ross McKenzie Sam Young Cho Reference: S.Y. Cho and R.H.M, Phys. Rev. A 73, (2006)
Statistical Models in Optical Communications
Quantum Error Correction Codes-From Qubit to Qudit Xiaoyi Tang, Paul McGuirk.
Introduction to Quantum Information Processing Lecture 4 Michele Mosca.
Dirac Notation and Spectral decomposition Michele Mosca.
Quantum Mechanics from Classical Statistics. what is an atom ? quantum mechanics : isolated object quantum mechanics : isolated object quantum field theory.
Efficient Quantum State Tomography using the MERA in 1D critical system Presenter : Jong Yeon Lee (Undergraduate, Caltech)
An Arbitrary Two-qubit Computation in 23 Elementary Gates or Less Stephen S. Bullock and Igor L. Markov University of Michigan Departments of Mathematics.
Dirac Notation and Spectral decomposition
Quantum Computation and Quantum Information – Lecture 2 Part 1 of CS406 – Research Directions in Computing Dr. Rajagopal Nagarajan Assistant: Nick Papanikolaou.
School of Physics & Astronomy FACULTY OF MATHEMATICAL & PHYSICAL SCIENCE Parallel Transport & Entanglement Mark Williamson 1, Vlatko Vedral 1 and William.
1 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lecture 14 (2009)
Witnesses for quantum information resources Archan S. Majumdar S. N. Bose National Centre for Basic Sciences, Kolkata, India Collaborators: S. Adhikari,
From Flipping Qubits to Programmable Quantum Processors Drinking party Budmerice, 1 st May 2003 Vladimír Bužek, Mário Ziman, Mark Hillery, Reinhard Werner,
DEPARTMENT OF PHYSICS UNIVERSITY OF TORONTO, 60 ST. GEORGE STREET, TORONTO, ONTARIO, CANADA M5S 1A7 Daniel F. V. JAMES Department of Physics & Center for.
Engineering of arbitrary U(N) transformation by quantum Householder reflections P. A. Ivanov, E. S. Kyoseva, and N. V. Vitanov.
 Quantum State Tomography  Finite Dimensional  Infinite Dimensional (Homodyne)  Quantum Process Tomography (SQPT)  Application to a CNOT gate  Related.
Quantum entanglement and Quantum state Tomography Zoltán Scherübl Nanophysics Seminar – Lecture BUTE.
Bell Measurements and Teleportation. Overview Entanglement Bell states and Bell measurements Limitations on Bell measurements using linear devices Teleportation.
1 / 18 DEPARTMENT OF PHYSICS UNIVERSITY OF TORONTO, 60 ST. GEORGE STREET, TORONTO, ONTARIO, CANADA M5S 1A7 Quantum Correlations from Classical Coherence.
What is Qu antum In formation and T echnology? Prof. Ivan H. Deutsch Dept. of Physics and Astronomy University of New Mexico Second Biannual Student Summer.
Quantum information with programmable optical devices: Quantum state reconstruction of qudits Carlos Saavedra Center for Optics and Photonics, Universidad.
Build Your Own Quantum Computer for Fun and Profit!
Quantum Computing Reversibility & Quantum Computing.
Quantum Entanglement and Distillation in Information Processing Shao-Ming Fei
Efficient measure of scalability Cecilia López, Benjamin Lévi, Joseph Emerson, David Cory Department of Nuclear Science & Engineering, Massachusetts Institute.
8.4.2 Quantum process tomography 8.5 Limitations of the quantum operations formalism 量子輪講 2003 年 10 月 16 日 担当:徳本 晋
When are Correlations Quantum?: Verification and Quantification of Entanglement with simple measurements Imperial College London Martin B Plenio Koenraad.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.
Distillation and determination of unknown two-qubit entanglement: Construction of optimal witness operator Heung-Sun Sim Physics, KAIST ESF conference:
1/30 University of Toronto, 28 March 2005 Quantum Information Processing with Atoms and Light Daniel F. V. James Group T-4, Los Alamos National Lab University.
Chapter 61 Chapter 7 Review of Matrix Methods Including: Eigen Vectors, Eigen Values, Principle Components, Singular Value Decomposition.
QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Qudit Implementations with Energy-Time Entangled Photons 1 Bänz Bessire Quantum Optics Lab – The Stefanov Group.
Beginner’s Guide to Quantum Computing Graduate Seminar Presentation Oct. 5, 2007.
Maximally Multipartite Entangled States and Statistical Mechanics
M. Stobińska1, F. Töppel2, P. Sekatski3,
Synopsis “The Matrix”: polarisation and pulsar timing
Quantum State and Process Tomography: measuring mixed states
BASIS Foundation Summer School 2018 "Many body theory meets quantum information" Simulation of many-body physics with existing quantum computers Walter.
Ion Trap Quantum Computing and Teleportation
Whither Quantum Computing? (avec les pièges à ions)
Quantum Teleportation
Lecture on Linear Algebra
Quantum Information Theory Introduction
Quantum entanglement measures and detection
Shor's Algorithm with a Linear-Optics Quantum Computer
Quantum One.
Chap 4 Quantum Circuits: p
Quantum optics as a tool for visualizing fundamental phenomena
Quantum computation using two component Bose-Einstein condensates
INTERNATIONAL WORKSHOP ON QUANTUM INFORMATION
Witness for Teleportation
Finite Heisenberg group and its application in quantum computing
Presentation transcript:

Quantum State and Process Measurement and Characterization Daniel F. V. JAMES Theoretical Division T-4 Los Alamos National Laboratory E-mail: dfvj@lanl.gov Universität Innsbruck 5 May 2004 ¡Viva México! ¡Viva Juárez! ¡Viva el Cinco de mayo!

State of a Single Qubit Photon polarization based qubits Measure Single Copy by projecting on to : get answer “click” or “no click” One bit of information about a and b: you know one of them is non-zero Measure multiple (assumed identical) copies: frequency of “clicks” gives estimate of |b|2

Find relative phase of a and b by performing a unitary operation before beam splitter: e.g.: Frequency of “clicks” now gives an estimate of Systematic way of getting all the data needed….

Stokes Parameters Measure intensity with four different filters: (i) 50% intensity (ii) H-polarizer (iii) 45o polarizer (iv) RCP G. G. Stokes, Trans Cambridge Philos Soc 9 399 (1852)

Stokes Parameters • These 4 parameters completely specify polarization of beam • Beam is an ensemble of photons… Pauli matrices

2 Qubit Quantum States Pure states Mixed states Ideal case Quantum state is random: need averages and correlations of coefficients

State Creation by OPDC Arbitrary state: change basis…

2 Qubit Quantum State Tomography source measurement Coincidence Rate measurements for two photons

Linear combination of na,b yields the two-photon Stokes parameters: From the two-photon Stokes parameters, we can get an estimate of the density matrix: Doesn’t give the right answer….

Maximum Likelihood Tomography* Numerically Minimize the function: Maximum Likelihood fit to "physical" density matrix Density matrix must be Hermitian, normalized, non-negative * D. F. V. James, et al., Phys Rev A 64, 052312 (2001). where: r = TT†/Tr{TT†}  and

Example: Measured Density Matrix

Quantum State Tomography I sublevels of Hydrogen (partial) (Ashburn et al, 1990) Optical mode (Raymer et al., 1993) Molecular vibrations (Walmsley et al, 1995) Motion of trapped ion (Wineland et al., 1996) Motion of trapped atom (Mlynek et al., 1997) Liquid state NMR (Chaung et al, 1998) Entangled Photons (Kwiat et al, 1999)* Entangled ions (Blatt et al., 2002) *A. G. White, D. F. V. James, P. H. Eberhard and P. G. Kwiat, Phys Rev Lett 83, 3103 (1999).

Characterizing the State Purity Fidelity: how close are two states? Pure states: Mixed states: doesn’t work:

Measures of Entanglement Pure states How much entanglement is in this state? Entropy of reduced density matrix of one photon Concurrence: Concurrence is equivalent to Entanglement : C=0 implies separable state C=1 implies maximally entangled state (e.g. Bell states)

Entanglement in Mixed States Mixed states can be de-composed into incoherent sums of pure states: “Average” Concurrence: dependent on decomposition “Minimized Average Concurrence”: Independent of decomposition C=0 implies separable state C=1 implies maximally entangled state (e.g. Bell states) Analytic expression (Wootters, ‘98) makes things very convenient!

(in computational basis) Two Qubit Mixed State Concurrence “spin flip matrix” Transpose (in computational basis) Eigenvalues of R (in decreasing order)

“Map” of Hilbert Space* MEMS states *W. J. Munro et al., Phys Rev A 64, 030302-1 (2001) * D.F.V. James and P.G .Kwiat, Los Alamos Science, 2002

Process Tomography Trace Preserving Completely Positive Maps: Every thing that could possibly happen to a quantum state (without measuring it) “operator-sum formalism” “Kraus operators” set of basis matrices, e.g.: Trace orthogonality:

Decompose the Kraus operators: then- where- c is a Hermitian, positive 16x16 matrix(“error correlation matrix”), with the constraints-

Process Tomography * 16 Input states 16 Projection states • Estimate probability from counts 16x16 = 256 data: • Recover cmn by linear inversion - problematic in constraining positivity - close analogy with state tomography… *I. L. Chuang and M. A. Nielsen, J. Mod Op. 44, 2455 (1997); M. W. Mitchell et al., Phys Rev Lett 91, 120402 (2003).

Maximum Likelihood Process Tomography • Numerically optimize where: (256 free parameters) • Constraints on cmn : - positive - Hermitian - additional constraint for physically allowed process:

Process Tomography of UQ Optical CNOT* Most Likely cmn matrix Actual CNOT *J. L. O’Brien, G. J. Pryde, A. Gilchrist,D. F. V. James, N. K. Langford, T. C. Ralph and A. G. White, “Quantum process tomography of a controlled-NOT gate,” Phys Rev Lett, submitted (2004); quant-ph/0402166.

Characterizing Processes

Conclusions • Quantum state tomography now reduced to practice for a number of qubit systems. • How to characterize states: Entropy, Entanglement, and all that • First steps in tomography of processes; how do you characterize a process?

Collaborators • Prof. Paul G. Kwiat (Illinois) • Dr. Andrew White (Queensland) • Dr. Bill Munro (HP Bristol) • LANL Postdocs – Dr. John Grondalski (now X-1) – Dr. Sergey Ponomarenko • Recent LASS Students — Mr. David Etlinger, Rochester — Mr. David Hume, Kentucky — Miss. Miho Ishibashi, Salisbury

The end