EE 5340 Semiconductor Device Theory Lecture 14 - Fall 2009

Slides:



Advertisements
Similar presentations
Ideal Junction Theory Assumptions Ex = 0 in the chg neutral reg. (CNR)
Advertisements

EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 13 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter
L04 24Jan021 Semiconductor Device Modeling and Characterization EE5342, Lecture 4-Spring 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011 Professor Ronald L. Carter
L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE Spring 2001 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 - Fall 2009 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 7 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 8 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 4 – Spring 2011 Professor Ronald L. Carter
PN-junction diode: I-V characteristics
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
Lecture 13 OUTLINE pn Junction Diodes (cont’d) Charge control model
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 16 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 06 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 13 - Fall 2010
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 14 - Fall 2010
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 11 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 04 – Spring 2011
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 18 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 12 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 12 – Spring 2011
Professor Ronald L. Carter
Professor Ronald L. Carter
pn Junction Diodes: I-V Characteristics
Professor Ronald L. Carter
Deviations from the Ideal I-V Behavior
Professor Ronald L. Carter
Lecture 11 OUTLINE pn Junction Diodes (cont’d) Narrow-base diode
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
EE 5340 Semiconductor Device Theory Lecture 13 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2003
Lecture 3 OUTLINE Semiconductor Basics (cont’d) PN Junction Diodes
Lecture 11 OUTLINE pn Junction Diodes (cont’d) Narrow-base diode
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 23 - Fall 2003
Lecture 11 OUTLINE pn Junction Diodes (cont’d) Narrow-base diode
Lecture 13 OUTLINE pn Junction Diodes (cont’d) Charge control model
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
EE 5340 Semiconductor Device Theory Lecture 9 - Fall 2009
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 9 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 13 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 17 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 16 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 11 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 13 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 14 - Fall 2003
Presentation transcript:

EE 5340 Semiconductor Device Theory Lecture 14 - Fall 2009 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc

S-R-H rec for excess min carr For n-type low-level injection and net excess minority carriers, (i.e., no > dn = dp > po = ni2/no), U = dp/tp, (prop to exc min carr) For p-type low-level injection and net excess minority carriers, (i.e., po > dn = dp > no = ni2/po), U = dn/tn, (prop to exc min carr) L 14 Oct 08

Minority hole lifetimes Mark E. Law, E. Solley, M. Liang, and Dorothea E. Burk, “Self-Consistent Model of Minority-Carrier Lifetime, Diffusion Length, and Mobility, IEEE ELECTRON DEVICE LETTERS, VOL. 12, NO. 8, AUGUST 1991 The parameters used in the fit are τo = 10 μs, Nref = 1×1017/cm2, and CA = 1.8×10-31cm6/s. L 14 Oct 08

Minority electron lifetimes Mark E. Law, E. Solley, M. Liang, and Dorothea E. Burk, “Self-Consistent Model of Minority-Carrier Lifetime, Diffusion Length, and Mobility, IEEE ELECTRON DEVICE LETTERS, VOL. 12, NO. 8, AUGUST 1991 The parameters used in the fit are τo = 30 μs, Nref = 1×1017/cm2, and CA = 8.3×10-32 cm6/s. L 14 Oct 08

References for Part A Device Electronics for Integrated Circuits, 3rd ed., by Richard S. Muller, Theodore I. Kamins, and Mansun Chan, John Wiley and Sons, New York, 2003. Mark E. Law, E. Solley, M. Liang, and Dorothea E. Burk, “Self-Consistent Model of Minority-Carrier Lifetime, Diffusion Length, and Mobility, IEEE ELECTRON DEVICE LETTERS, VOL. 12, NO. 8, AUGUST 1991. D.B.M. Klaassen; “A UNIFIED MOBILITY MODEL FOR DEVICE SIMULATION”, Electron Devices Meeting, 1990. Technical Digest., International 9-12 Dec. 1990 Page(s):357 – 360. David Roulston, Narain D. Arora, and Savvas G. Chamberlain “Modeling and Measurement of Minority-Carrier Lifetime versus Doping in Diffused Layers of n+-p Silicon Diodes”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. ED-29, NO. 2, FEBRUARY 1982, pages 284-291. M. S. Tyagi and R. Van Overstraeten, “Minority Carrier Recombination in Heavily Doped Silicon”, Solid-State Electr. Vol. 26, pp. 577-597, 1983. Download a copy at Tyagi.pdf. L 14 Oct 08

S-R-H rec for deficient min carr If n < ni and p < pi, then the S-R-H net recomb rate becomes (p < po, n < no): U = R - G = - ni/(2t0cosh[(ET-Efi)/kT]) And with the substitution that the gen lifetime, tg = 2t0cosh[(ET-Efi)/kT], and net gen rate U = R - G = - ni/tg The intrinsic concentration drives the return to equilibrium L 14 Oct 08

The Continuity Equation The chain rule for the total time derivative dn/dt (the net generation rate of electrons) gives L 14 Oct 08

The Continuity Equation (cont.) L 14 Oct 08

The Continuity Equation (cont.) L 14 Oct 08

The Continuity Equation (cont.) L 14 Oct 08

The Continuity Equation (cont.) L 14 Oct 08

The Continuity Equation (cont.) L 14 Oct 08

The Continuity Equation (cont.) L 14 Oct 08

Review of depletion approximation pp << ppo, -xp < x < 0 nn << nno, 0 < x < xn 0 > Ex > -2Vbi/W, in DR (-xp < x < xn) pp=ppo=Na & np=npo= ni2/Na, -xpc< x < -xp nn=nno=Nd & pn=pno= ni2/Nd, xn < x < xnc x xn xnc -xpc -xp Ev Ec qVbi EFi EFn EFp L 14 Oct 9

Review of D. A. (cont.) Ex -xpc -xp xn xnc x -Emax L 14 Oct 9

Forward Bias Energy Bands Ev Ec EFi xn xnc -xpc -xp q(Vbi-Va) EFP EFN qVa x Imref, EFn Imref, EFp L 14 Oct 9

Law of the junction: “Remember to follow the minority carriers” L 14 Oct 9

Law of the junction (cont.) L 14 Oct 9

Law of the junction (cont.) L 14 Oct 9

Injection Conditions L 14 Oct 9

Ideal Junction Theory Assumptions Ex = 0 in the chg neutral reg. (CNR) MB statistics are applicable Neglect gen/rec in depl reg (DR) Low level injection applies so that dnp < ppo for -xpc < x < -xp, and dpn < nno for xn < x < xnc Steady State conditions L 14 Oct 9

Ideal Junction Theory (cont.) L 14 Oct 9

Ideal Junction Theory (cont.) L 14 Oct 9

Ideal Junction Theory (cont.) L 14 Oct 9

Diffusion Length model L = (Dt)1/2 Diffusion Coeff. is Pierret* model L 14 Oct 9

Excess minority carrier distr fctn L 14 Oct 9

Forward Bias Energy Bands Ev Ec EFi xn xnc -xpc -xp q(Vbi-Va) EFP EFN qVa x Imref, EFn Imref, EFp L 14 Oct 9

Carrier Injection ln(carrier conc) ln Na ln Nd ln ni ~Va/Vt ~Va/Vt ln ni2/Nd ln ni2/Na x -xpc -xp xnc xn L 14 Oct 9

Minority carrier currents L 15 Oct 14

Evaluating the diode current L 15 Oct 14

Special cases for the diode current L 15 Oct 14

Ideal diode equation Assumptions: Current dens, Jx = Js expd(Va/Vt) low-level injection Maxwell Boltzman statistics Depletion approximation Neglect gen/rec effects in DR Steady-state solution only Current dens, Jx = Js expd(Va/Vt) where expd(x) = [exp(x) -1] L 15 Oct 14

Ideal diode equation (cont.) Js = Js,p + Js,n = hole curr + ele curr Js,p = qni2Dp coth(Wn/Lp)/(NdLp) = qni2Dp/(NdWn), Wn << Lp, “short” = qni2Dp/(NdLp), Wn >> Lp, “long” Js,n = qni2Dn coth(Wp/Ln)/(NaLn) = qni2Dn/(NaWp), Wp << Ln, “short” = qni2Dn/(NaLn), Wp >> Ln, “long” Js,n << Js,p when Na >> Nd L 15 Oct 14

Diffnt’l, one-sided diode conductance Static (steady-state) diode I-V characteristic IQ Va VQ L 15 Oct 14

Diffnt’l, one-sided diode cond. (cont.) L 15 Oct 14

Charge distr in a (1- sided) short diode dpn Assume Nd << Na The sinh (see L10) excess minority carrier distribution becomes linear for Wn << Lp dpn(xn)=pn0expd(Va/Vt) Total chg = Q’p = Q’p = qdpn(xn)Wn/2 Wn = xnc- xn dpn(xn) Q’p x xn xnc L 15 Oct 14

Charge distr in a 1- sided short diode dpn Assume Quasi-static charge distributions Q’p = +qdpn(xn,Va)Wn/2 dQ’p =q(W/2) x {dpn(xn,Va+dV) - dpn(xn,Va)} Wn = xnc - xn (Va) dpn(xn,Va+dV) dpn(xn,Va) dQ’p Q’p x xn xnc L 15 Oct 14

References * Semiconductor Device Fundamentals, by Pierret, Addison-Wesley, 1996 ** Physics of Semiconductor Devices, M. Shur, Wiley. L 14 Oct 9