Decrease-and-Conquer

Slides:



Advertisements
Similar presentations
CSC 421: Algorithm Design & Analysis
Advertisements

Chapter 5 Decrease and Conquer. Homework 7 hw7 (due 3/17) hw7 (due 3/17) –page 127 question 5 –page 132 questions 5 and 6 –page 137 questions 5 and 6.
A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.
Chapter 5: Decrease and Conquer
Chapter 4 Decrease-and-Conquer. Decrease-and-Conquer 1. Reduce problem instance to smaller instance of the same problem 2. Solve smaller instance 3. Extend.
Chap 5: Decrease & conquer. Objectives To introduce the decrease-and-conquer mind set To show a variety of decrease-and-conquer solutions: Depth-First.
Design & Analysis of Algorithms CS315
Divide-and-Conquer The most-well known algorithm design strategy:
A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.
Decrease-and-Conquer
CS4413 Divide-and-Conquer
Chapter 4: Divide and Conquer Master Theorem, Mergesort, Quicksort, Binary Search, Binary Trees The Design and Analysis of Algorithms.
Chapter 4 Divide-and-Conquer Copyright © 2007 Pearson Addison-Wesley. All rights reserved.
Chapter 4 Divide-and-Conquer Copyright © 2007 Pearson Addison-Wesley. All rights reserved.
Chapter 4: Divide and Conquer The Design and Analysis of Algorithms.
1 Foundations of Software Design Fall 2002 Marti Hearst Lecture 20: Sorting.
MA/CSSE 473 Day 12 Insertion Sort quick review DFS, BFS Topological Sort.
1 Decrease-and-Conquer 1. Reduce problem instance to smaller instance of the same problem 2. Solve smaller instance 3. Extend solution of smaller instance.
Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 1 Chapter.
A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.
MA/CSSE 473 Day 15 BFS Topological Sort Combinatorial Object Generation Intro.
A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.
Chapter 5 Decrease-and-Conquer Copyright © 2007 Pearson Addison-Wesley. All rights reserved.
Introduction to Algorithms Rabie A. Ramadan rabieramadan.org 7.
MA/CSSE 473 Day 14 Strassen's Algorithm: Matrix Multiplication Decrease and Conquer DFS.
UNIT - IV SORTING By B.Venkateswarlu Dept of CSE.
MA/CSSE 473 Day 12 Interpolation Search Insertion Sort quick review
Subject Name: Design and Analysis of Algorithm Subject Code: 10CS43
Decrease-and-Conquer
CSC 421: Algorithm Design & Analysis
CSC 421: Algorithm Design & Analysis
Decrease-and-Conquer Approach
Chapter 4 Divide-and-Conquer
Chapter 5 Decrease-and-Conquer
Analysis of algorithms
Sorting Chapter 13 presents several common algorithms for sorting an array of integers. Two slow but simple algorithms are Selectionsort and Insertionsort.
Introduction to the Design and Analysis of Algorithms
CSC 421: Algorithm Design & Analysis
Divide-and-Conquer The most-well known algorithm design strategy:
Chapter 4 Divide-and-Conquer
Decrease-and-Conquer
Divide-and-Conquer The most-well known algorithm design strategy:
Chapter 5 Decrease-and-Conquer
Chapter 5.
Chapter 4: Divide and Conquer
Decrease-and-Conquer
What is an algorithm? An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate.
Transform and Conquer This group of techniques solves a problem by a transformation to a simpler/more convenient instance of the same problem (instance.
Quadratic Sorting Chapter 12 presents several common algorithms for sorting an array of integers. Two slow but simple algorithms are Selectionsort and.
Data Structures Review Session
Decrease-and-Conquer
Chapter 5 Decrease-and-Conquer
Divide-and-Conquer The most-well known algorithm design strategy:
Chapter 4 Divide-and-Conquer
Sorting "There's nothing in your head the sorting hat can't see. So try me on and I will tell you where you ought to be." -The Sorting Hat, Harry Potter.
Sorting Chapter 13 presents several common algorithms for sorting an array of integers. Two slow but simple algorithms are Selectionsort and Insertionsort.
Recall Brute Force as a Problem Solving Technique
Divide-and-Conquer The most-well known algorithm design strategy:
CSC 421: Algorithm Design & Analysis
CSC 380: Design and Analysis of Algorithms
CSC 380: Design and Analysis of Algorithms
CSC 380: Design and Analysis of Algorithms
Introduction to Algorithms
Analysis of algorithms
CSC 380: Design and Analysis of Algorithms
CSC 380: Design and Analysis of Algorithms
CSC 421: Algorithm Design & Analysis
Sorting.
What is an algorithm? An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate.
Presentation transcript:

Decrease-and-Conquer Reduce problem instance to smaller instance of the same problem Solve smaller instance Extend solution of smaller instance to obtain solution to original instance Can be implemented either top-down or bottom-up Also referred to as inductive or incremental approach A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

3 Types of Decrease and Conquer Decrease by a constant (usually by 1): insertion sort topological sorting algorithms for generating permutations, subsets Decrease by a constant factor (usually by half) binary search and bisection method exponentiation by squaring multiplication à la russe Variable-size decrease Euclid’s algorithm selection by partition Nim-like games A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

What’s the difference? Consider the problem of exponentiation: Compute an Brute Force: multiply 1 by a n times (bottom-up) Decrease by one: (top-down) Decrease by constant factor: Try to get the students involved in coming up with these: Brute Force: an= a*a*a*a*...*a n Divide and conquer: an= an/2 * an/2 (more accurately, an= an/2 * a n/2│) Decrease by one: an= an-1* a (one hopes a student will ask what is the difference with brute force here: there is none in the resulting algorithm, of course, but you can arrive at it in two different ways) Decrease by constant factor: an= (an/2)2 (again, if no student asks about it, be sure to point out the difference with divide and conquer. Here there is a significant difference that leads to a much more efficient algorithm – in divide and conquer we recompute an/2 A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Insertion Sort To sort array A[0..n-1], sort A[0..n-2] recursively and then insert A[n-1] in its proper place among the sorted A[0..n-2] Usually implemented bottom up (nonrecursively) Example: Sort 6, 4, 1, 8, 5 6 | 4 1 8 5 4 6 | 1 8 5 1 4 6 | 8 5 1 4 6 8 | 5 1 4 5 6 8 A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

The Insertionsort Algorithm The Insertionsort algorithm also views the array as having a sorted side and an unsorted side. Now we'll look at another sorting method called Insertionsort. The end result will be the same: The array will be sorted from smallest to largest. But the sorting method is different. However, there are some common features. As with the Selectionsort, the Insertionsort algorithm also views the array as having a sorted side and an unsorted side, ... [0] [1] [2] [3] [4] [5]

The Insertionsort Algorithm Sorted side Unsorted side The sorted side starts with just the first element, which is not necessarily the smallest element. ...like this. However, in the Selectionsort, the sorted side always contained the smallest elements of the array. In the Insertionsort, the sorted side will be sorted from small to large, but the elements in the sorted side will not necessarily be the smallest entries of the array. Because the sorted side does not need to have the smallest entries, we can start by placing one element in the sorted side--we don't need to worry about sorting just one element. But we do need to worry about how to increase the number of elements that are in the sorted side. [0] [1] [2] [3] [4] [5]

The Insertionsort Algorithm Sorted side Unsorted side The sorted side grows by taking the front element from the unsorted side... The basic approach is to take the front element from the unsorted side... [0] [1] [2] [3] [4] [5]

The Insertionsort Algorithm Sorted side Unsorted side ...and inserting it in the place that keeps the sorted side arranged from small to large. ...and insert this element at the correct spot of the sorted side. In this example, the front element of the unsorted side is 20. So the 20 must be inserted before the number 45 which is already in the sorted side. [0] [1] [2] [3] [4] [5]

The Insertionsort Algorithm Sorted side Unsorted side In this example, the new element goes in front of the element that was already in the sorted side. After the insertion, the sorted side contains two elements. These two elements are in order from small to large, although they are not the smallest elements in the array. [0] [1] [2] [3] [4] [5]

The Insertionsort Algorithm Sorted side Unsorted side Sometimes we are lucky and the new inserted item doesn't need to move at all. Sometimes we are lucky and the newly inserted element is already in the right spot. This happens if the new element is larger than anything that's already in the array. [0] [1] [2] [3] [4] [5]

The Insertionsort Algorithm Sorted side Unsorted side Sometimes we are lucky twice in a row. Sometimes we are lucky twice in a row. [0] [1] [2] [3] [4] [5]

How to Insert One Element Copy the new element to a separate location. Sorted side Unsorted side The actual insertion process requires a bit of work that is shown here. The first step of the insertion is to make a copy of the new element. Usually this copy is stored in a local variable. It just sits off to the side, ready for us to use whenever we need it. [0] [1] [2] [3] [4] [5]

How to Insert One Element Shift elements in the sorted side, creating an open space for the new element. After we have safely made a copy of the new element, we start shifting elements from the end of the sorted side. These elements are shifted rightward, to create an "empty spot" for our new element to be placed. In this example we take the last element of the sorted side and shift it rightward one spot... [0] [1] [2] [3] [4] [5]

How to Insert One Element Shift elements in the sorted side, creating an open space for the new element. ...like this. Is this the correct spot for the new element? No, because the new element is smaller than the next element in the sorted section. So we continue shifting elements rightward... [0] [1] [2] [3] [4] [5]

How to Insert One Element Continue shifting elements... This is still not the correct spot for our new element, so we shift again... [0] [1] [2] [3] [4] [5]

How to Insert One Element Continue shifting elements... ...and shift one more time... [0] [1] [2] [3] [4] [5]

How to Insert One Element ...until you reach the location for the new element. Finally, this is the correct location for the new element. In general there are two situations that indicate the "correct location" has been found: 1. We reach the front of the array (as happened here), or 2. We reached an element that is less than or equal to the new element. [0] [1] [2] [3] [4] [5]

How to Insert One Element Copy the new element back into the array, at the correct location. Sorted side Unsorted side Once the correct spot is found, we copy the new element back into the array. The number of elements in the sorted side has increased by one. [0] [1] [2] [3] [4] [5]

How to Insert One Element The last element must also be inserted. Start by copying it... Sorted side Unsorted side The last element of the array also needs to be inserted. Start by copying it to a safe location. [0] [1] [2] [3] [4] [5]

A Quiz How many shifts will occur before we copy this element back into the array? Now we will shift elements rightward. How many shifts will be done? [0] [1] [2] [3] [4] [5]

A Quiz Four items are shifted. [0] [1] [2] [3] [4] [5] These four elements are shifted. But the 7 at location [0] is not shifted since it is smaller than the new element. [0] [1] [2] [3] [4] [5]

A Quiz Four items are shifted. And then the element is copied back into the array. The new element is inserted into the array. [0] [1] [2] [3] [4] [5]

Pseudocode of Insertion Sort A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Analysis of Insertion Sort Time efficiency Cworst(n) = n(n-1)/2  Θ(n2) Cavg(n) ≈ n2/4  Θ(n2) Cbest(n) = n - 1  Θ(n) (also fast on almost sorted arrays) Space efficiency: in-place Stability: yes Best elementary sorting algorithm overall A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Dags and Topological Sorting A dag: a directed acyclic graph, i.e. a directed graph with no (directed) cycles Arise in modeling many problems that involve prerequisite constraints (construction projects, document version control) Vertices of a dag can be linearly ordered so that for every edge its starting vertex is listed before its ending vertex (topological sorting). Being a dag is also a necessary condition for topological sorting be possible. a b a b a dag not a dag c d c d A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Topological Sorting Example Order the following items in a food chain tiger human fish sheep shrimp plankton wheat A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

DAG – Directed Acyclic Graph Four types of edges in a DFS forest of a directed graph: Tree edges Back edges: from vertices to their ancestors Forward edges: from vertices to their descendants Cross edges Example: Tree edges: ab, bc, de Back edges: ba Forward edges: ac Cross edges: dc A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

DFS-based Algorithm DFS-based algorithm for topological sorting Perform DFS traversal, noting the order vertices are popped off the traversal stack Reverse order solves topological sorting problem Back edges encountered?→ NOT a dag! Example: A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

DFS-based Algorithm Example: Topological sort: a b e f c d g h c d a e b g h f a b e f c d g h A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Source Removal Algorithm Repeatedly identify and remove a source (a vertex with no incoming edges) and all the edges incident to it until either no vertex is left (problem is solved) or there is no source among remaining vertices (not a dag) Example: A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Source Removal Algorithm Example: Topological Sort: a b c d e f g h a b e f c d g h A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Generating Permutations Decrease-by-one idea: generate all (n-1)! Permutations, the solution is get by inserting n in each of the n positions of every permutation of n – 1 elements. Minimal-change algorithm: bottom-up If n = 1 return 1; otherwise, generate recursively the list of all permutations of 12…n-1 and then insert n into each of those permutations by starting with inserting n into 12...n-1 by moving right to left and then switch direction (minimal-change requirement) Example: n=3 start 1 insert 2 into 1 right to left 12 21 insert 3 into 12 right to left 123 132 312 insert 3 into 21 left to right 321 231 213 A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Generating Subsets Decrease-by-one idea: generate all subsets for n – 1 elements, the solution is get by adding n in each of the subset of n – 1 elements A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Generating Subsets Binary reflected Gray code: minimal-change algorithm for generating 2n bit strings corresponding to all the subsets of an n-element set where n > 0 If n=1 make list L of two bit strings 0 and 1 else generate recursively list L1 of bit strings of length n-1 copy list L1 in reverse order to get list L2 add 0 in front of each bit string in list L1 add 1 in front of each bit string in list L2 append L2 to L1 to get L return L A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Decrease-by-Constant-Factor Algorithms In this variation of decrease-and-conquer, instance size is reduced by the same factor (typically, 2) Examples: binary search and the method of bisection exponentiation by squaring multiplication à la russe (Russian peasant method) fake-coin puzzle A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Binary Search Very efficient algorithm for searching in sorted array: K vs A[0] . . . A[m] . . . A[n-1] If K = A[m], stop (successful search); otherwise, continue searching by the same method in A[0..m-1] if K < A[m] and in A[m+1..n-1] if K > A[m] l  0; r  n-1 while l  r do m  (l+r)/2 if K = A[m] return m else if K < A[m] r  m-1 else l  m+1 return -1 A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Analysis of Binary Search Time efficiency worst-case recurrence: Cw (n) = 1 + Cw( n/2 ), Cw (1) = 1 solution: Cw(n) = log2(n+1) This is VERY fast: e.g., Cw(106) = 20 Optimal for searching a sorted array Limitations: must be a sorted array (not linked list) A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Exponentiation by Squaring The problem: Compute an where n is a nonnegative integer The problem can be solved by applying recursively the formulas: For even values of n a n = (a n/2 )2 if n > 0 and a 0 = 1 For odd values of n a n = (a (n-1)/2 )2 a Recurrence: M(n) = M( n/2 ) + f(n), where f(n) = 1 or 2, M(0) = 0 Master Theorem: M(n)  Θ(log n) = Θ(b) where b = log2(n+1) A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Russian Peasant Multiplication The problem: Compute the product of two positive integers Can be solved by a decrease-by-half algorithm based on the following formulas. For even values of n: n 2 n * m = * 2m For odd values of n: n – 1 2 n * m = * 2m + m if n > 1 and m if n = 1 A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Example of Russian Peasant Multiplication Compute 20 * 26 n m 20 26 10 52 5 104 2 208 + 104 1 416 416 520 Note: Method reduces to adding m’s values corresponding to odd n’s. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Fake-Coin Puzzle (simpler version)   A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Variable-Size-Decrease Algorithms In the variable-size-decrease variation of decrease-and-conquer, instance size reduction varies from one iteration to another Examples: Euclid’s algorithm for greatest common divisor partition-based algorithm for selection problem interpolation search some algorithms on binary search trees Nim and Nim-like games A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Euclid’s Algorithm Euclid’s algorithm is based on repeated application of equality gcd(m, n) = gcd(n, m mod n) Ex.: gcd(80,44) = gcd(44,36) = gcd(36, 12) = gcd(12,0) = 12 One can prove that the size, measured by the second number, decreases at least by half after two consecutive iterations. Hence, T(n)  O(log n) A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Selection Problem Find the k-th smallest element in a list of n numbers k = 1 or k = n median: k = n/2 Example: 4, 1, 10, 9, 7, 12, 8, 2, 15 median = ? The median is used in statistics as a measure of an average value of a sample. In fact, it is a better (more robust) indicator than the mean, which is used for the same purpose. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Algorithms for the Selection Problem The sorting-based algorithm: Sort and return the k-th element Efficiency (if sorted by mergesort): Θ(nlog n) A faster algorithm is based on the array partitioning: Assuming that the array is indexed from 0 to n-1 and s is a split position obtained by the array partitioning: If s = k-1, the problem is solved; if s > k-1, look for the k-th smallest element in the left part; if s < k-1, look for the (k-s)-th smallest element in the right part. Note: The algorithm can simply continue until s = k-1. s all are ≤ A[s] all are ≥ A[s] A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Two Partitioning Algorithms There are two principal ways to partition an array: One-directional scan (Lomuto’s partitioning algorithm) Two-directional scan (Hoare’s partitioning algorithm) A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Lomuto’s Partitioning Algorithm Scans the array left to right maintaining the array’s partition into three contiguous sections: < p,  p, and unknown, where p is the value of the first element (the partition’s pivot). On each iteration the unknown section is decreased by one element until it’s empty and a partition is achieved by exchanging the pivot with the element in the split position s. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Lomuto’s Partitioning Algorithm A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Tracing Lomuto’s Partioning Algorithm l,s i r 4 1 10 8 7 12 9 2 15 s … A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Quickselect A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Tracing Quickselect (Partition-based Algorithm) Find the median of 4, 1, 10, 9, 7, 12, 8, 2, 15 Here: n = 9, k = 9/2 = 5, k -1=4 l r 1 2 3 4 5 6 7 8 10 12 9 15 s after 1st partitioning: s=2<k-1=4 after 2nd partitioning: s=4=k-1 The median is A[4]= 8 A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Efficiency of Quickselect Average case (average split in the middle): C(n) = C(n/2)+(n+1) C(n)  Θ(n) Best case: C(n)  Θ(n) Worst case (degenerate split): C(n)  Θ(n2) A more sophisticated choice of the pivot leads to a complicated algorithm with Θ(n) worst-case efficiency. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Binary Search Tree Algorithms Several algorithms on BST requires recursive processing of just one of its subtrees, e.g., Searching Insertion of a new key Finding the smallest (or the largest) key k <k >k A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Searching in Binary Search Tree Algorithm BTS(x, v) //Searches for node with key equal to v in BST rooted at node x if x = NIL return -1 else if v = K(x) return x else if v < K(x) return BTS(left(x), v) else return BTS(right(x), v) Efficiency worst case: C(n) = n average case: C(n) ≈ 2ln n ≈ 1.39log2 n A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.