دانشجو: ناصر علمی غیاثی استاد درس: دکتر توحید خواه پاییز 89

Slides:



Advertisements
Similar presentations
Arc-length computation and arc-length parameterization
Advertisements

Fluent Overview Ahmadi/Nazridoust ME 437/537/637.
Linear Programming Graphical Solution Procedure. Two Variable Linear Programs When a linear programming model consists of only two variables, a graphical.
Example: Electrokinetic valve
Analysis of Contour Motions Ce Liu William T. Freeman Edward H. Adelson Computer Science and Artificial Intelligence Laboratory Massachusetts Institute.
(Real time MPC) Prepared by : Kamal Reza Varhoushi December – 2011.
Control Structure Selection for a Methanol Plant using Hysys/Unisim
P. Venkataraman Mechanical Engineering P. Venkataraman Rochester Institute of Technology DETC2014 – 35148: Continuous Solution for Boundary Value Problems.
Nozzles & Jets for Pelton Wheels A Special Device to implement Pure Momentum based Energy Exchange……. P M V Subbarao Professor Mechanical Engineering.
Engine Electronic Controlled. Ignition systems THE CONSTANT ENERGY IGNITION SYSTEM DIGITAL (PROGRAMMED) IGNITION SYSTEM DISTRIBUTORLESS IGNITION SYSTEM.
Visual Recognition Tutorial
A gentle introduction to Gaussian distribution. Review Random variable Coin flip experiment X = 0X = 1 X: Random variable.
Problem statement; Solution structure and defining elements; Solution properties in a neighborhood of regular point; Solution properties in a neighborhood.
Explicit Non-linear Optimal Control Law for Continuous Time Systems via Parametric Programming Vassilis Sakizlis, Vivek Dua, Stratos Pistikopoulos Centre.
REAL TIME OPTIMIZATION: A Parametric Programming Approach Vivek Dua You Only Solve Once.
Certifying the robustness of model predictive controllers W. P. Heath and B. Lennox Control Systems Centre The University of Manchester.
Algorithm Evaluation and Error Analysis class 7 Multiple View Geometry Comp Marc Pollefeys.
1 Numerical geometry of non-rigid shapes Non-Euclidean Embedding Non-Euclidean Embedding Lecture 6 © Alexander & Michael Bronstein tosca.cs.technion.ac.il/book.
CHAPTER 13.7 Exhaust Gas Re-Circulation Valve
Ramprasad Yelchuru, MIQP formulations for optimal controlled variables selection in Self Optimizing Control, 1/16 MIQP formulation for optimal controlled.
IE 607 Constrained Design: Using Constraints to Advantage in Adaptive Optimization in Manufacturing.
MapleSim and the Advantages of Physical Modeling
An Effective Dynamic Scheduling Runtime and Tuning System for Heterogeneous Multi and Many-Core Desktop Platforms Authous: Al’ecio P. D. Binotto, Carlos.
Motion Blending (Multidimensional Interpolation) Jehee Lee.
Developing models for optimization Lec 5 week 6. Example (1) Classify the following model.
Numerical Computation
HPC 1.4 Notes Learning Targets: - Solve equations using your calculator -Solve linear equations -Solve quadratic equations - Solve radical equations -
INGAS 6 months Meeting, Prague, May, 2009 INGAS INtegrated GAS Powertrain 1 CVUT-JBRC Scope Experimental Facilities – General Features – InGAS Customizing.
Multiple Model approach to Multi-Parametric Model Predictive Control of a Nonlinear Process a simulation case study Boštjan Pregelj, Samo Gerkšič Jožef.
Adaptive Feedback Scheduling with LQ Controller for Real Time Control System Chen Xi.
Newton’s Method, Root Finding with MATLAB and Excel
Engine Management Systems and Calibration
Monte-Carlo based Expertise A powerful Tool for System Evaluation & Optimization  Introduction  Features  System Performance.
Smart Icing System Review, September 30 – October 1, 2002 Autopilot Analysis and EP Scheme for the Twin Otter under Iced Conditions. Vikrant Sharma University.
Written by Changhyun, SON Chapter 5. Introduction to Design Optimization - 1 PART II Design Optimization.
Trigonometric Equations. Definition Example: Consider:
Notes Over 5.6 Quadratic Formula
Robot Formations Motion Dynamics Based on Scalar Fields 1.Introduction to non-holonomic physical problem 2.New Interaction definition as a computational.
دانشگاه صنعتي اميركبير دانشكده مهندسي پزشكي استاد درس دكتر فرزاد توحيدخواه بهمن 1389 کنترل پيش بين-دکتر توحيدخواه MPC Stability-2.
Optimization in Engineering Design 1 Introduction to Non-Linear Optimization.
Sullivan Algebra and Trigonometry: Section 12.9 Objectives of this Section Set Up a Linear Programming Problem Solve a Linear Programming Problem.
3/16/2016 Vanderbilt Motorsports Intake and Exhaust Project 1 Vanderbilt Motorsports Intake/Exhaust Team January 17, 2008 Presentation Kristina Kitko Mark.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Part 2 - Chapter 7 Optimization.
Turbocharging of I.C. Engines P M V Subbarao Professor Mechanical Engineering Department Going for Artificially Breathing Engines….
Variable Geometry Turbocharger
Learning to Align: a Statistical Approach
Process Dynamics and Operations Group (DYN) TU-Dortmund
Students will be able to:
Equations Quadratic in form factorable equations
Date of download: 10/20/2017 Copyright © ASME. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Geometrical intuition behind the dual problem
Sahar Sargheini, Alberto Paganini, Ralf Hiptmair, Christian Hafner
Copyright © Cengage Learning. All rights reserved.
Guilherme A. A. Gonçalves, Evandro L. Alvaristo, Guilherme C
Two-level strategy Vertical decomposition Optimal process operation
Fluent Overview Ahmadi/Nazridoust ME 437/537/637.
Variable Geometry Turbocharger
3-3 Optimization with Linear Programming
EGR and Air Injection Systems
Graphical Solution Procedure
Sensors Chapter 17 Lesson 3.
ورود اطلاعات بصورت غيربرخط
دانشگاه صنعتي اميركبير
EE368 Soft Computing Genetic Algorithms.
Grade Eight – Algebra I - Unit 4
Equations Quadratic in form factorable equations
Recapitulation of Lecture 11
Computer Aided Geometric Design
Presentation transcript:

دانشجو: ناصر علمی غیاثی استاد درس: دکتر توحید خواه پاییز 89 Fast MPC:عنوان سمینار دانشجو: ناصر علمی غیاثی استاد درس: دکتر توحید خواه پاییز 89

فهرست مطالب: مقدمه کاربردها روش های حل ارائه ی چند مثال

مقدمه: تعریف سیستم سریع: سیستمی که برای کنترل آن زمان نمونه برداری باید در حد ثانیه و میلی ثانیه باشد. سیستم پیچیده: سیستمی که تعداد المان های آن و تعاملات آنها زیاد و پیچیده باشد. تعداد متغیرهای حالت و ورودی و خروجی ها زیاد باشند. سیستم غیرخطی: معادلات حاکم بر سیستم غیرخطی بوده و محاسبات بهینه سازی آن پیچیده باشد.

کاربردها: کنترل پایداری خودرو

کاربردها: کنترل احتراق در موتور دیزلی هدایت و ناوبری تصمیم گیری

روش های حل: استفاده از توابع: Laguerre Functions B-Spline Functions Bezier Functions این روش ها بر اساس تقریب عمل می کنند. برای مثال ورودی کنترلی را بر اساس تعداد محدود و اندکی توابع Laguerre تقریب زده می شود. هدف مسئله ی بهینه سازی محاسبه ی ضرایب Laguerre می باشد. این روش ها برای سیستم های پیچیده، با تعداد متغیر حالت زیاد و خطی قابل استفاده است.

روش های حل: تبدیل مسئله ی غیر خطی به تکه ای خطی: تبدیل مسئله ی غیر خطی به خطی متغیر با زمان (LTV) تبدیل مسئله ی غیرخطی به مسئله ی PWA(Piece wise affine) استفاده از روش Active Set برای مسائل PWA روش های سریع و تقریبی interior-point توزیع مسئله ی بهینه سازی بدون تغییر دینامیک سیستم: Control Parameterization Approach (CPA) Multiple shooting real-time iteration …

LPV(Linear Parameter Varying)

LPV(Linear Parameter Varying)

LPV(Linear Parameter Varying)

PWA(Piece wise affine) - the implementation of MPC requires the online solution of a QP at each time step. - Multi parametric quadratic program (mp-QP) H,F,G,W,E can be easily obtained from the plant model.

PWA(Piece wise affine) EGR: exhaust gas recirculation valves VGT: variable geometry turbochargers MAF: mass air flow MAP: intake manifold absolute pressure

Active Set Constraints are active in x0 Numerical and iterative for solve QP problem , offline or Online. for each region, constraints are different and so we have different steps.

Active Set

Active Set

Control Parameterization Approach (CPA) این روش دینامیک سیستم را تغییر نمی دهد. بلکه کنترلر را پارامتری می نماید. the CPA consists basically in the computation of the steady state control u and the definition of a temporal parameterization that structurally meets the constraints. The steady state control u and the corresponding stationary state x can be calculated by solving a simple optimization problem.

Control Parameterization Approach (CPA) the following temporal parameterization can be defined: P: design parameter مسئله تبدیل به مسئله ای برای تعیین P می گردد.لذا متغیرهای مسئله به بردار p تقلیل یافت.

Control Parameterization Approach (CPA) The real time platform used is a 480MHz Autobox-dSPACE system. The routines were developed in C language using the Matlab environment . Sampling period is 50 ms.

با تشکر