Volume 23, Issue 8, Pages (May 2018)

Slides:



Advertisements
Similar presentations
Volume 62, Issue 5, Pages (June 2009)
Advertisements

Neurons in the Ventral Striatum Exhibit Cell-Type-Specific Representations of Outcome during Learning  Hisham E. Atallah, Andrew D. McCool, Mark W. Howe,
Linking Cholinergic Interneurons, Synaptic Plasticity, and Behavior during the Extinction of a Cocaine-Context Association  Junuk Lee, Joel Finkelstein,
Neuroplasticity Subserving Motor Skill Learning
Volume 66, Issue 6, Pages (June 2010)
Cell-Type-Specific Sensorimotor Processing in Striatal Projection Neurons during Goal- Directed Behavior  Tanya Sippy, Damien Lapray, Sylvain Crochet,
Sangyu Xu, Gishnu Das, Emily Hueske, Susumu Tonegawa  Current Biology 
Volume 78, Issue 3, Pages (May 2013)
Volume 20, Issue 1, Pages (July 2017)
Differential Dynamics of Activity Changes in Dorsolateral and Dorsomedial Striatal Loops during Learning  Catherine A. Thorn, Hisham Atallah, Mark Howe,
Volume 18, Issue 4, Pages (January 2017)
Volume 92, Issue 1, Pages (October 2016)
Activation of VTA GABA Neurons Disrupts Reward Consumption
Nick Jikomes, Rohan N. Ramesh, Yael Mandelblat-Cerf, Mark L. Andermann 
Nigrotectal Stimulation Stops Interval Timing in Mice
Cristopher M. Niell, Michael P. Stryker  Neuron 
Volume 14, Issue 11, Pages (March 2016)
Linking Cholinergic Interneurons, Synaptic Plasticity, and Behavior during the Extinction of a Cocaine-Context Association  Junuk Lee, Joel Finkelstein,
Volume 92, Issue 1, Pages (October 2016)
Altered Synapse Stability in the Early Stages of Tauopathy
Volume 22, Issue 5, Pages (January 2018)
Volume 81, Issue 1, Pages (January 2014)
Volume 62, Issue 5, Pages (June 2009)
Vincent B. McGinty, Antonio Rangel, William T. Newsome  Neuron 
Volume 27, Issue 19, Pages e4 (October 2017)
Jeffrey Cockburn, Anne G.E. Collins, Michael J. Frank  Neuron 
Volume 21, Issue 7, Pages (November 2017)
Neurons in the Ventral Striatum Exhibit Cell-Type-Specific Representations of Outcome during Learning  Hisham E. Atallah, Andrew D. McCool, Mark W. Howe,
Hyoung F. Kim, Hidetoshi Amita, Okihide Hikosaka  Neuron 
Overproduction of Neurons Is Correlated with Enhanced Cortical Ensembles and Increased Perceptual Discrimination  Wei-Qun Fang, Rafael Yuste  Cell Reports 
Volume 19, Issue 10, Pages (June 2017)
Pieter R. Roelfsema, Henk Spekreijse  Neuron 
Inhibitory Interplay between Orexin Neurons and Eating
Visually Cued Action Timing in the Primary Visual Cortex
Rosanna P. Sammons, Claudia Clopath, Samuel J. Barnes  Cell Reports 
Volume 95, Issue 4, Pages e9 (August 2017)
Volume 88, Issue 3, Pages (November 2015)
Volume 8, Issue 4, Pages (August 2014)
Sharon C. Furtak, Omar J. Ahmed, Rebecca D. Burwell  Neuron 
Corey Baimel, Benjamin K. Lau, Min Qiao, Stephanie L. Borgland 
Volume 16, Issue 6, Pages (August 2016)
Parvalbumin-Expressing GABAergic Neurons in Mouse Barrel Cortex Contribute to Gating a Goal-Directed Sensorimotor Transformation  Shankar Sachidhanandam,
Volume 75, Issue 5, Pages (September 2012)
Volume 21, Issue 9, Pages (November 2017)
Ryan G. Natan, Winnie Rao, Maria N. Geffen  Cell Reports 
Volume 86, Issue 6, Pages (June 2015)
Experience-Dependent Equilibration of AMPAR-Mediated Synaptic Transmission during the Critical Period  Kyung-Seok Han, Samuel F. Cooke, Weifeng Xu  Cell.
Monica W. Chu, Wankun L. Li, Takaki Komiyama  Neuron 
Neuroplasticity Subserving Motor Skill Learning
Volume 16, Issue 5, Pages (August 2016)
Varying Intolerance of Gene Pathways to Mutational Classes Explain Genetic Convergence across Neuropsychiatric Disorders  Shahar Shohat, Eyal Ben-David,
Volume 97, Issue 6, Pages e5 (March 2018)
Volume 21, Issue 10, Pages (December 2017)
Dopamine Scales Performance in the Absence of New Learning
Franziska Aurich, Christian Dahmann  Cell Reports 
Traces of Experience in the Lateral Entorhinal Cortex
Casey Brewer, Elizabeth Chu, Mike Chin, Rong Lu  Cell Reports 
Activation of VTA GABA Neurons Disrupts Reward Consumption
Volume 27, Issue 7, Pages (April 2017)
Volume 24, Issue 10, Pages (September 2018)
Cross-Modal Associative Mnemonic Signals in Crow Endbrain Neurons
Volume 75, Issue 5, Pages (September 2012)
Social Isolation Induces Rac1-Dependent Forgetting of Social Memory
The Vomeronasal System Can Learn Novel Stimulus Response Pairings
Orbitofrontal Cortex as a Cognitive Map of Task Space
Volume 26, Issue 1, Pages e6 (January 2019)
Volume 90, Issue 5, Pages (June 2016)
Volume 15, Issue 2, Pages (April 2016)
Volume 19, Issue 12, Pages (June 2017)
Volume 66, Issue 6, Pages (June 2010)
Presentation transcript:

Volume 23, Issue 8, Pages 2264-2272 (May 2018) Dorsolateral Striatum Engagement Interferes with Early Discrimination Learning  Hadley C. Bergstrom, Anna M. Lipkin, Abby G. Lieberman, Courtney R. Pinard, Ozge Gunduz-Cinar, Emma T. Brockway, William W. Taylor, Mio Nonaka, Olena Bukalo, Tiffany A. Wills, F. Javier Rubio, Xuan Li, Charles L. Pickens, Danny G. Winder, Andrew Holmes  Cell Reports  Volume 23, Issue 8, Pages 2264-2272 (May 2018) DOI: 10.1016/j.celrep.2018.04.081 Copyright © 2018 The Author(s) Terms and Conditions

Cell Reports 2018 23, 2264-2272DOI: (10.1016/j.celrep.2018.04.081) Copyright © 2018 The Author(s) Terms and Conditions

Figure 1 DLS Photosilencing Expedites Early Discriminated Choice Learning (A–C) Touchscreen visual discrimination training (A) increased correct responding (F2,50 = 185.25, p < 0.01, n = 26) (B) and decreased error rates (F2,50 = 161.06, p < 0.01) (C). (D) GFP-labeled DLS AAV-expression. EP, endopeduncular nucleus; GPe, external globus pallidus; SNr, substantia nigra reticulata. (E) Green light reduced DLS neuronal activity ex vivo (t[80] = 4.68, p < 0.01, n = 7). (F and G) DLS photosilencing did not affect open-field locomotion (F) or real-time place preference (G). (H–L) DLS photosilencing (H) increased early-stage percentage correct responding (t[14] = 2.40, p = 0.05, n = 7–9) (I), decreased errors (t[14] = 2.91, p < 0.01) (J), and increased percentage win-stay (t[14] = 2.92, p < 0.05) (K) and percentage lose-shift (t[14] = 2.96, p < 0.05) (L) behavior. ∗p < 0.05. Data are mean ± SEM. Cell Reports 2018 23, 2264-2272DOI: (10.1016/j.celrep.2018.04.081) Copyright © 2018 The Author(s) Terms and Conditions

Figure 2 Effects of DLS Photosilencing Effects on Spatiotemporal Parameters in the Touchscreen Task (A) Definitions of choice, transition, and reward zones. (B) Representative heatmap of cumulative time spent in each zone. (C) Percentage distribution of time in each zone did not differ between GFP and ArchT groups. (D) Average time to session completion did not differ between GFP and ArchT groups. (E) Average inter-trial interval did not differ between GFP and ArchT groups. (F) Total responses made did not differ between GFP and ArchT groups. (G) The ArchT group traveled less distance in the transition zone than GFP controls (t[14] = 2.81, p < 0.05). (H) The ArchT group moved more slowly in the transition (t[14] = 2.30, p < 0.05) and choice (t[14] = 2.18, p < 0.05) zones than GFP controls. (I) The ArchT group visited the choice zone less frequently than GFP controls (t[14] = 2.38, p < 0.05). (J) Representative movement speed traces in GFP and ArchT groups (maximum green = 7.5 cm/s, maximum red = 1.5 cm/s). ∗p < 0.05. Data are mean ± SEM. Cell Reports 2018 23, 2264-2272DOI: (10.1016/j.celrep.2018.04.081) Copyright © 2018 The Author(s) Terms and Conditions

Figure 3 Pathway-Specific Recruitment during Learning (A–D) Representative immediate-early gene activity (Arc) in DLS Drd1- and Drd2-labelled cells. (E) The overall number of Arc+ DLS cells was unaltered from early to late learning. (F) Drd1-labelled, but not Drd2-labelled, Arc+ cells decreased from early (n = 3 mice, n = 30–34 sections, n = 1,800 cells) to late (n = 3 mice, n = 30–34 sections, n = 2,040) learning (t(62) = 5.14, p < 0.05). (G) There was a significant bias for Arc/Drd1-labeled over Arc/Drd2-labeled DLS neurons at early (t(58) = 8.37, p < 0.01) and late-learning (t(66) = 3.97, p < 0.01), though this decreased across stages (t(62) = 2.10, p < 0.05). (H–L) DLS direct-pathway-photosilencing (H) increased early-stage % correct responding (t(14) = 3.29, p < 0.01; n = 7–9) (I), decreased errors (t(14) = 3.64, p < 0.01) (J), and increased % win-stay (t(14) = 4.26, p < 0.01) (K), and % lose-shift behavior (t(14) = 2.74, p < 0.05) (L). (M–Q) DLS indirect-pathway-photosilencing (M) had no effect on % correct responding (N) but decreased early-stage errors (t(14) = 2.14, p = 0.05, n = 8) (O). There were no effects of DLS indirect-pathway-photosilencing on % win-stay (P) or % lose-shift behavior (Q) ∗p < 0.05. Data are mean ± SEM. Cell Reports 2018 23, 2264-2272DOI: (10.1016/j.celrep.2018.04.081) Copyright © 2018 The Author(s) Terms and Conditions

Figure 4 System-Level Adaptations to DLS Photosilencing (A) Effects of DLS photosilencing on number of Arc+ neurons in various brain regions was quantified after early or late learning. (B–E) Irrespective of DLS photosilencing or learning stage, Arc+ neuronal number was highly correlated between DMS and PL (B and C), but not DMS and SM (D and E) (data from n = 5–9 mice, n = 6 sections per mouse, n = 650–790 DMS cells, n = 1,600–1,772 PL cells). (F–P) DLS photosilencing decreased late-learning Arc expression in DMS (F) (t[11] = 3.76, p < 0.01, n = 59) and PL (G) (t[11] = 5.88, p < 0.01), not SM or NAc (H–K). DLS-photosilencing decreased late-learning Arc expression in DMS (F, t(11) = 3.76, p < 0.01, n = 5–9) and PL t(11) = 5.88, p < 0.01) (G), not SM (H), NAc shell or NAc core (I–K) DMS-photosilencing (L) impaired mid/late-learning on multiple measures (M, % correct mid = t(13) = 2.22, p < 0.05; N, errors mid = t(13) = 2.43, p < 0.05, late = t(13) = 2.56, p < 0.05; O, % win-stay trials mid = t(13) = 2.30, p < 0.05, late = t(13) = 2.13, p = .05; n = 7–8) and increased late-stage lose-shift behavior (t(14) = 2.58, p < 0.05) (P). ∗p < 0.05. Data are mean ± SEM. Scale bar = 50 μm. Cell Reports 2018 23, 2264-2272DOI: (10.1016/j.celrep.2018.04.081) Copyright © 2018 The Author(s) Terms and Conditions