EE 212 Passive AC Circuits Lecture Notes 2b 2010-20111EE 212.

Slides:



Advertisements
Similar presentations
“Power Factor” In Transmission System
Advertisements

Chapter 11 AC Power Analysis
Since Therefore Since.
REVIEW OF COMPLEX NUMBERS
AC POWER CALCULATION Instantaneous, average and reactive power
EE 2121 PASSIVE AC CIRCUITS Instructor : Robert Gander Office: 2B37 Phone: Class Website:
Impedance and Admittance. Objective of Lecture Demonstrate how to apply Thévenin and Norton transformations to simplify circuits that contain one or more.
Chapter 12 RL Circuits.
Department of Electronic Engineering BASIC ELECTRONIC ENGINEERING Steady-State Sinusoidal Analysis.
Sinusoidal Steady-State Power Calculations
CH5 AC circuit power analysis 5.1 Instantaneous Power 5.2 Average Power 5.3 Effectives values of Current & Voltage 5.4 Apparent Power and Power Factor.
AC Review Discussion D12.2. Passive Circuit Elements i i i + -
Announcements Be reading Chapters 1 and 2 from the book
Lecture 16 AC Circuit Analysis (1) Hung-yi Lee. Textbook Chapter 6.1.
Lesson 24 AC Power and Power Triangle
Chapter 20 AC Network Theorems.
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 16.1 Power in AC Circuits  Introduction  Power in Resistive Components 
Power Factor and Power Factor Correction
AC POWER ANALYSIS Tunku Muhammad Nizar Bin Tunku Mansur
Lecture 27Electro Mechanical System1  The fact that power is always positive reveals that it always flows from the generator to the resistor.  This is.
SINGLE PHASE A.C CIRCUITS
Chapter 7 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
ECE 3183 – Chapter 5 – Part D CHAPTER 5 - D1 ECE 3183 – EE Systems Chapter 5 – Part D AC Power, Power Factor.
AC POWER ANALYSIS Tunku Muhammad Nizar Bin Tunku Mansur
Alexander-Sadiku Fundamentals of Electric Circuits
Fundamentals of Electric Circuits Chapter 11
Series and Parallel AC Circuits
ES250: Electrical Science
Chapter 11 AC Steady-State Power
Fundamentals of Electric Circuits Chapter 11
ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Fourth Edition, by Allan R. Hambley, ©2008 Pearson Education, Inc. Lecture 16 Phasor Circuits, AC.
STEADY-STATE POWER ANALYSIS
1 Chapter 11 AC Power Analysis 電路學 ( 二 ). 2 AC Power Analysis Chapter Instantaneous and Average Power 11.2Maximum Average Power Transfer 11.3Effective.
EGR 2201 Unit 13 AC Power Analysis
Review Part 3 of Course. Passive Circuit Elements i i i + -
AC POWER ANALYSIS Instantaneous & Average Power
P OWER IN AC C IRCUITS Prepared by : Jasani Kevin ( ) Chudasama pruthvirajsinh ( ) Parmar Princee ( ) Guided By : Prof.
Chapter 7 AC Power Analysis
1 Alternating Current Circuits Chapter Inductance CapacitorResistor.
The V  I Relationship for a Resistor Let the current through the resistor be a sinusoidal given as Is also sinusoidal with amplitude amplitudeAnd.
Chapter 11 AC Power Analysis
Power System Fundamentals EE-317 Lecture 3 06 October 2010.
1 ELECTRICAL TECHNOLOGY EET 103/4  Define and explain sine wave, frequency, amplitude, phase angle, complex number  Define, analyze and calculate impedance,
Chapter 10 Sinusoidal Steady- State Power Calculations
1  Explain and calculate average power, apparent power, reactive power  Calculate the total P, Q and S and sketch the power triangle. ELECTRICAL TECHNOLOGY.
E E 2415 Lecture 9 Phasor Circuit Analysis, Effective Value and Complex Power: Watts, VAR’s and Volt-Amperes.
Three Phase Motors Maths
AC POWER ANALYSIS. 2 Content Average Power Maximum Average Power Transfer Complex Power Power Factor Correction.
CHAPTER 2: DC Circuit Analysis and AC Circuit Analysis Motivation Sinusoids’ features Phasors Phasor relationships for circuit elements Impedance and admittance.
FUNDAMENTAL OF ELECTRICAL POWER SYSTEMS (EE 270)
1 Chapter 3 AC Power Analysis. 2 AC Power Analysis Chapter 3 3.1Instantaneous and Average Power 3.2Maximum Average Power Transfer 3.3Effective or RMS.
ELECTRIC CIRCUITS EIGHTH EDITION JAMES W. NILSSON & SUSAN A. RIEDEL.
Lesson 3: Ac Power in Single Phase Circuits
Power in AC Circuits Introduction Power in Resistive Components
Chapter 11 AC Power Analysis
Electric Circuits (EELE 2312)
Lesson 21: AC Power and Power Triangle
Lecture 07 AC POWER & POWER FACTOR.
Chapter 20 AC Network Theorems.
Sinusoidal Excitation of Circuits
Islamic University of Gaza
STEADY-STATE POWER ANALYSIS
ELECTRIC CIRCUITS EIGHTH EDITION
Power in AC Circuits Introduction Power in Resistive Components
Electric Circuits I: EE 282
2. 2 The V-I Relationship for a Resistor Let the current through the resistor be a sinusoidal given as Is also sinusoidal with amplitude amplitude.
ELL100: INTRODUCTION TO ELECTRICAL ENGG.
Methods of Analysis and Network Theorems of A.C. Circuits
The instantaneous power
Engineering Circuit Analysis
Presentation transcript:

EE 212 Passive AC Circuits Lecture Notes 2b EE 212

Application of Thevenins Theorem Thevenin's Theorem is specially useful in analyzing power systems and other circuits where one particular segment in the circuit (the load) is subject to change. Source Impedance at a Power System Bus The source impedance value (or the network impedance at the power system bus) can be obtained from the utility for all the sub-stations of a power grid. This is the Thevenin Impedance seen upstream from the sub-station bus. The Thevenin Voltage can be measured at the bus (usually the nominal or rated voltage at the bus). Thevenin equivalent at the sub-station is important to determine cable, switchgear and equipment ratings, fault levels, and load characteristics at different times EE 212

A B Linear Circuit Nortons Theorem Any linear two terminal network with sources can be replaced by an equivalent current source in parallel with an equivalent impedance. A B Z I Current source I is the current which would flow between the terminals if they were short circuited. Equivalent impedance Z is the impedance at the terminals (looking into the circuit) with all the sources reduced to zero EE 212

~ A B Z E A B Z I Thevenin Equivalent E = IZ Note: equivalence is at the terminals with respect to the external circuit. Norton Equivalent I = E / Z EE 212

If a linear circuit has 2 or more sources acting jointly, we can consider each source acting separately (independently) and then superimpose the 2 or more resulting effects. Superposition Theorem Steps: Analyze the circuit considering each source separately To remove sources, short circuit V sources and open circuit I sources For each source, calculate the voltages and currents in the circuit Sum the voltages and currents Superposition Theorem is very useful when analyzing a circuit that has 2 or more sources with different frequencies EE 212

Non-sinusoidal Periodic Waveforms A non-sinusoidal periodic waveform, f(t) can be expressed as a sum of sinusoidal waveforms. This is known as a Fourier series. Fourier series is expressed as: f(t) = a 0 + (a n Cos nwt) + (b n Sin nwt) where, a 0 = average over one period (dc component) = a n = b n = for n > EE 212

Non-sinusoidal Periodic Waveforms: Square Waveform a n = = 0 f(t) = 1for 0 t T/2 = -1 for T/2 t T a 0 = average over one period = 0 b n = = f(t) = a 0 + (a n cos nωt) + (b n sin nωt) = (sin ωt + sin 3ωt + sin 5ωt + …..) EE 212

Linear AC Circuits with Non-Sinusoidal Waveforms A linear circuit with non-sinusoidal periodic sources can be analyzed using the Superposition Theorem. Express the non-sinusoidal function by its Fourier series. That is, the periodic source will be represented as multiple sinusoidal sources of different frequencies. Use Superposition Theorem to calculate voltages and currents for each element in the series. Calculate the final voltages and currents by summing up all the harmonics EE 212

Equations for RMS Values (V, I) and Power V rms = (v v v v …) peak values V rms = V V 1rms 2 + V 2rms 2 + V 3rms 2 + … I rms = ( i i i i …) peak values v 1 i 1 cos 1 + v 2 i 2 cos P = V 0 I 0 + P = |I rms | 2 R v 1 i 1 sin 1 + v 2 i 2 sin Q = EE 212

Example: Non-sinusoidal AC source Find the RMS current and power supplied to the circuit elements. The circuit is energized by a non-sinusoidal voltage v(t), where: v(t) = sin t + 25 sin 3 t volts, and = 500 rad/s v(t) H EE 212

EE Response to a sinusoidal input is also sinusoidal. Has the same frequency, but may have different phase angle. Linear Circuit with AC Excitation ~ v i Input signal, v = V m sin t Response i = I m sin ( t + ) where is the phase angle between v and i Power Factor : cosine of the angle between the current and voltage, i.e. p.f. = cos If is + ve, i leads v leading p.f. If is - ve, i lags v lagging p.f.

EE Across Resistor – Unity p.f. Voltage and Current are in phase v(t) = V m sin t i(t) = I m sin t i.e., angle between v and i, p.f. = cos = cos 0 0 = 1 Phasor Diagram V I

EE Across Inductor – Lagging p.f. Current lags Voltage by 90 0 v(t) = V m sin t i(t) = I m sin ( t-90 0 ) angle between v and i, p.f. = cos = cos 90 0 = 0 lagging Phasor Diagram V I Clock-wise lagging

EE Across Capacitor – Leading p.f. Current leads Voltage by 90 0 v(t) = V m sin t i(t) = I m sin ( t+90 0 ) angle between v and i, p.f. = cos = cos 90 0 = 0 leading Phasor Diagram V I

EE Instantaneous Power, p(t) = v(t) · i(t) Power v = V m sin ωt volts i = I m sin(ωt - θ) A p(t) = V m sin ωt · I m sin(ωt - θ) p(t) = cos θ – cos(2ωt-θ) Real Power, P = average value of p(t) = V rms ·I rms ·cos θ p(t) = cosθ(1-cos2ωt) + sinθ·sin2ωt i v Reactive Power, Q = peak value of power exchanged every half cycle = V rms ·I rms ·sin θ

EE Real and Reactive Power Real (Active) Power, P - useful power - measured in watts - capable of doing useful work, e.g., lighting, heating, and rotating objects - hidden power - measured in VAr - related to power quality Reactive Power, Q Sign Convention: Power used or consumed: + ve Power generated:- ve

EE Real and Reactive Power (continued) Source – AC generator: P is – ve Induction gen: Q is +ve Synchronous: Q is + or –ve Load – component that consumes real power, P is + ve Resistive: e.g. heater, light bulbs, p.f.=1, Q = 0 Inductive: e.g. motor, welder, lagging p.f., Q = + ve Capacitive: e.g. capacitor, synchronous motor (condensor), leading p.f., Q = - ve Total Power in a Circuit is Zero

EE Complex Power Complex Power, S = V I* ( conjugate of I) S = |S| / in Polar Form - Power Factor Angle |S| - Apparent Power measured in VA S = P + jQ in Rectangular Form P - Real Power Q – Reactive Power Power ratings of generators & transformers in VA, kVA, MVA |S| P jQ Re Im Q P = |S| cos |V| |I| cos Q = |S| sin |V| |I| sin P = |I| 2 R Q = |I| 2 X p.f. = |S| = |V|·|I|

EE Examples: Power 1: V = 10/10 0 V, I = 20/5 0 A. Find P, Q 2: What is the power supplied to the combined load? What is the load power factor? Motor 5 hp, 0.8 p.f. lagging 100% efficiency Heater 5 kW Welder 4+j3 120 Hz

EE Power Factor Correction Most loads are inductive in nature, and therefore, have lagging p.f. (i.e. current lagging behind voltage) Typical p.f. values: induction motor (0.7 – 0.9), welders (0.35 – 0.8), fluorescent lights (magnetic ballast 0.7 – 0.8, electronic ), etc. Capacitance can be added to make the current more leading.

EE Power Factor Correction (continued) P.F. Correction usually involves adding capacitor (in parallel) to the load circuit, to maximize the p.f. and bring it close to 1. The load draws less current from the source, when p.f. is corrected. Benefits: - Therefore, p.f. is a measure of how efficiently the power supply is being utilized

EE Example: P.F. Correction What capacitor is required in parallel for p.f. correction? Find the total current drawn before and after p.f. correction. Motor 5 hp, 0.8 p.f. lagging 100% efficiency Heater 5 kW Welder 4+j3 120