by Hyun Sik Jun, David A. Weinstein, Young Mok Lee, Brian C

Slides:



Advertisements
Similar presentations
Metformin prevents glucotoxicity by alleviating oxidative and ER stress–induced CD36 expression in pancreatic beta cells  Jun Sung Moon, Udayakumar Karunakaran,
Advertisements

Volume 132, Issue 3, Pages (March 2007)
Cardiac-Specific Overexpression of HIF-1α Prevents Deterioration of Glycolytic Pathway and Cardiac Remodeling in Streptozotocin-Induced Diabetic Mice 
Biological evaluation of (3β)-STIGMAST-5-EN-3-OL as potent anti-diabetic agent in regulating glucose transport using in vitro model  S. Sujatha, S. Anand,
Hypoxia-Inducible Factor-1α Mediates Increased Sympathoexcitation via Glutamatergic N-Methyl-d-Aspartate Receptors in the Paraventricular Nucleus of Rats.
Volume 15, Issue 6, Pages (June 2009)
IFNα-stimulated neutrophils and monocytes release a soluble form of TNF-related apoptosis-inducing ligand (TRAIL/Apo-2 ligand) displaying apoptotic activity.
Identification of key regulatory pathways of myeloid differentiation using an mESC-based karyotypically normal cell model by Dong Li, Hong Yang, Hong Nan,
Ellagic acid inhibits oxidized LDL-mediated LOX-1 expression, ROS generation, and inflammation in human endothelial cells  Wen-Jane Lee, PhD, Hsiu-Chung.
by Yoko Otake, Sridharan Soundararajan, Tapas K. Sengupta, Ebenezer A
Differential STAT3, STAT5, and NF-κB activation in human hematopoietic progenitors by endogenous interleukin-15: implications in the expression of functional.
Canonical Wnt/β-catenin signaling mediates transforming growth factor-β1-driven podocyte injury and proteinuria  Dan Wang, Chunsun Dai, Yingjian Li, Youhua.
Expression of GRIM-19 in missed abortion and possible pathogenesis
Ellagic acid inhibits oxidized LDL-mediated LOX-1 expression, ROS generation, and inflammation in human endothelial cells  Wen-Jane Lee, PhD, Hsiu-Chung.
G-CSF improves murine G6PC3-deficient neutrophil function by modulating apoptosis and energy homeostasis by Hyun Sik Jun, Young Mok Lee, Ki Duk Song, Brian.
Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway by Kevin M. Elias, Arian Laurence,
A novel TNFR1-triggered apoptosis pathway mediated by class IA PI3Ks in neutrophils by Barbara Geering, Ursina Gurzeler, Elena Federzoni, Thomas Kaufmann,
Lacidipine Remodels Protein Folding and Ca2+ Homeostasis in Gaucher's Disease Fibroblasts: A Mechanism to Rescue Mutant Glucocerebrosidase  Fan Wang,
Galectin-9 binding to Tim-3 renders activated human CD4+ T cells less susceptible to HIV-1 infection by Shokrollah Elahi, Toshiro Niki, Mitsuomi Hirashima,
Impaired glycolytic metabolism causes chondrocyte hypertrophy-like changes via promotion of phospho-Smad1/5/8 translocation into nucleus  T. Nishida,
Exposure to fluid shear stress modulates the ability of endothelial cells to recruit neutrophils in response to tumor necrosis factor-α: a basis for local.
Activation of ATF4 mediates unwanted Mcl-1 accumulation by proteasome inhibition by Jinsong Hu, Nana Dang, Eline Menu, Elke De Bryune, Dehui Xu, Ben Van.
Intermittent cyclic mechanical tension promotes endplate cartilage degeneration via canonical Wnt signaling pathway and E-cadherin/β-catenin complex cross-talk 
Red pulp macrophages in the human spleen are a distinct cell population with a unique expression of Fc-γ receptors by Sietse Q. Nagelkerke, Christine W.
Volume 133, Issue 6, Pages (December 2007)
Cytokine-inducible CD40 expression in human endothelial cells is mediated by interferon regulatory factor-1 by Andreas H. Wagner, Matthias Gebauer, Beatrix.
by Susana Constantino Rosa Santos, and Sérgio Dias
Inhibition of glycogen synthase kinase-3 activity leads to epigenetic silencing of nuclear factor κB target genes and induction of apoptosis in chronic.
Bone Marrow-Derived Mesenchymal Stem Cells Expressing Thioredoxin 1 Attenuate Bleomycin-Induced Skin Fibrosis and Oxidative Stress in Scleroderma  Miao.
Arsenic suppresses gene expression in promyelocytic leukemia cells partly through Sp1 oxidation by Wen-Chien Chou, Hsuan-Yu Chen, Sung-Liang Yu, Linzhao.
The transcriptional program of terminal granulocytic differentiation
Cathepsin-B-dependent apoptosis triggered by antithymocyte globulins: a novel mechanism of T-cell depletion by Marie-Cécile Michallet, Frederic Saltel,
J.E. Lafont, F.-A. Poujade, M. Pasdeloup, P. Neyret, F. Mallein-Gerin 
PI3K regulates pleckstrin-2 in T-cell cytoskeletal reorganization
Hydroxychloroquine inhibits calcium signals in T cells: a new mechanism to explain its immunomodulatory properties by Frederick D. Goldman, Andrew L. Gilman,
by Eleanor J. Molloy, Amanda J. O'Neill, Julie J
Volume 69, Issue 8, Pages (April 2006)
An Essential Role of Hrs/Vps27 in Endosomal Cholesterol Trafficking
by So Youn Kim, Hyun Sik Jun, Paul A. Mead, Brian C
by Thomas D. Nightingale, Krupa Pattni, Alistair N. Hume, Miguel C
Soluble PD-1 ligands regulate T-cell function in Waldenstrom macroglobulinemia by Shahrzad Jalali, Tammy Price-Troska, Jonas Paludo, Jose Villasboas, Hyo-Jin.
Volume 12, Issue 3, Pages (July 2015)
Volume 6, Issue 2, Pages (August 2002)
Spleen Tyrosine Kinase Mediates EGFR Signaling to Regulate Keratinocyte Terminal Differentiation  Nan-Lin Wu, Duen-Yi Huang, Li-Fang Wang, Reiji Kannagi,
Volume 141, Issue 5, Pages e2 (November 2011)
Volume 10, Issue 8, Pages (March 2015)
Volume 1, Issue 6, Pages (June 2005)
Inter-α inhibitor proteins maintain neutrophils in a resting state by regulating shape and reducing ROS production by Soe Soe Htwe, Hidenori Wake, Keyue.
by Silvia Mele, Stephen Devereux, Andrea G
G2A Plays Proinflammatory Roles in Human Keratinocytes under Oxidative Stress as a Receptor for 9-Hydroxyoctadecadienoic Acid  Tomoyasu Hattori, Hideru.
Myeloma cell–derived Runx2 promotes myeloma progression in bone
SIRT3 Reverses Aging-Associated Degeneration
Defective negative regulation of Toll-like receptor signaling leads to excessive TNF-α in myeloproliferative neoplasm by Hew Yeng Lai, Stefan A. Brooks,
Volume 11, Issue 4, Pages (April 2010)
The severe phenotype of Diamond-Blackfan anemia is modulated by heat shock protein 70 by Marc Gastou, Sarah Rio, Michaël Dussiot, Narjesse Karboul, Hélène.
Volume 17, Issue 12, Pages (December 2016)
Supplementary Figure 1 A B C SW620 HT29 SW620
Nan-Hyung Kim, Ai-Young Lee  Journal of Investigative Dermatology 
Hypoxia-Mediated Increases in l-2-hydroxyglutarate Coordinate the Metabolic Response to Reductive Stress  William M. Oldham, Clary B. Clish, Yi Yang,
Volume 122, Issue 7, Pages (June 2002)
by Rodrigo Abreu, Frederick Quinn, and Pramod K. Giri
HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia  Jung-whan Kim, Irina Tchernyshyov,
Defective RAB1B-related megakaryocytic ER-to-Golgi transport in RUNX1 haplodeficiency: impact on von Willebrand factor by Gauthami Jalagadugula, Lawrence.
Dysregulation of innate immune receptors on neutrophils in chronic granulomatous disease  Dominik Hartl, MD, Natalie Lehmann, MD, Florian Hoffmann, MD,
Volume 18, Issue 6, Pages (June 2010)
Senescence-associated defective HLA-DR upregulation does not modulate immunosuppressive properties of MSCs. (A) Fit and senescent MSCs were subjected to.
Mechanisms of Hypoxic Regulation of Plasminogen Activator Inhibitor-1 Gene Expression in Keloid Fibroblasts  Qunzhou Zhang, Yidi Wu, David K. Ann, Diana.
Volume 11, Issue 6, Pages (May 2015)
Volume 25, Issue 6, Pages (June 2017)
Evidence for a cross-talk between human neutrophils and Th17 cells
Presentation transcript:

Molecular mechanisms of neutrophil dysfunction in glycogen storage disease type Ib by Hyun Sik Jun, David A. Weinstein, Young Mok Lee, Brian C. Mansfield, and Janice Y. Chou Blood Volume 123(18):2843-2853 May 1, 2014 ©2014 by American Society of Hematology

G6PT-deficient neutrophils of GSD-Ib patients with varying maturation states were dysfunctional. G6PT-deficient neutrophils of GSD-Ib patients with varying maturation states were dysfunctional. (A) Analysis of the levels of total (CD66b+) and immature (CD66b+CD16−/lo) neutrophils in the fixed, erythrocyte-depleted blood leukocytes by flow cytometry using CD66b and CD16 antibodies. Representative profiles from HDs and GSD-Ib and GSD-Ia patients are shown. (B) Hema-3–stained cytospins of isolated peripheral blood neutrophils. (C) Viability of freshly isolated and annexin V–depleted neutrophils. Annexin V–depleted blood neutrophils were used for respiratory burst, chemotaxis, and calcium mobilization analyses. (D) Neutrophil respiratory burst activity in response to PMA. Representative experiments are shown. (E) Neutrophil concentration-dependent chemotaxis in response to fMLP. Data represent the mean ± standard error of the mean (SEM) of 5 patients (P1, P8, P10, P12, and P14) examined in separate experiments. **P < .005. (F) Calcium mobilization in response to 10−7 M of fMLP. Representative experiments are shown. ○, HDs; ●, GSD-Ib patients; ▲, GSD-Ia patients. Hyun Sik Jun et al. Blood 2014;123:2843-2853 ©2014 by American Society of Hematology

Analysis of 2-DG uptake, the expression of GLUT1 and HK, and levels of intracellular G6P, lactate, and ATP in G6PT-deficient neutrophils of GSD-Ib patients. Analysis of 2-DG uptake, the expression of GLUT1 and HK, and levels of intracellular G6P, lactate, and ATP in G6PT-deficient neutrophils of GSD-Ib patients. Annexin V–depleted peripheral blood neutrophils isolated from HDs and GSD-Ib patients were used in the study. For quantitative RT-PCR, data represent the mean ± SEM for HDs (n = 10) and GSD-Ib patients (n = 12). (A) Uptake of 2-DG. Data represent the mean ± SEM for HDs (n = 3) and GSD-Ib patients (n = 3). (B) Quantification of mRNA of GLUT1 by real-time RT-PCR. (C) Western blot analysis of protein extracts using antibodies against GLUT1 and HK3. Each lane contains 50 μg of protein. (D) Quantification of GLUT1 and HK3 protein levels by densitometry. Data represent the mean ± SEM for HDs (n = 8) and GSD-Ib patients (n = 7). (E) Confocal analysis of GLUT1 (green fluorescence), pan Cadherin membrane staining (red fluorescence), and DAPI nuclei staining (blue fluorescence) at original magnification ×630. (F) Quantification of HK1, HK2, and HK3 mRNA by real-time RT-PCR. (G) Quantification of G6P, lactate, and ATP. Data represent the mean ± SEM for HDs (n = 13) and GSD-Ib patients (n = 12). **P < .005. Hyun Sik Jun et al. Blood 2014;123:2843-2853 ©2014 by American Society of Hematology

Analysis of NADPH and the expression of NADPH oxidase in G6PT-deficient neutrophils of GSD-Ib patients. Analysis of NADPH and the expression of NADPH oxidase in G6PT-deficient neutrophils of GSD-Ib patients. Annexin V–depleted peripheral blood neutrophils isolated from HDs and GSD-Ib patients were used in the study. (A) Levels of neutrophil NADPH. Data represent the mean ± SEM for HDs (n = 7) and GSD-Ib patients (n = 6). (B) Quantification of gp91phox, p22phox, and p47phox mRNA by real-time RT-PCR. Data represent the mean ± SEM for HDs (n = 10) and GSD-Ib patients (n = 12). (C) Western blot analysis of protein extracts using antibodies against gp91phox, p22phox, p47phox, or β-actin. Each lane contains 50 μg of protein. (D) The relative protein levels of gp91phox, p22phox, and p47phox were quantified by densitometry. Data represent the mean ± SEM for HDs (n = 6) and GSD-Ib patients (n = 6). (E) Confocal analysis of p47phox (green fluorescence), pan Cadherin membrane staining (red fluorescence), and DAPI nuclei staining (blue fluorescence) at original magnification ×630 and quantification of the relative integrated fluorescence intensity by ImageJ. The p47phox translocation from the cytoplasm to the plasma membrane was demonstrated by colocalization of p47phox with the plasma membrane marker pan Cadherin. **P < .005. Hyun Sik Jun et al. Blood 2014;123:2843-2853 ©2014 by American Society of Hematology

Analysis of levels of Hsp90, HIF-1α, and PPAR-γ in G6PT-deficient neutrophils and the effects of PPAR-γ antagonist/agonist on neutrophil function. Analysis of levels of Hsp90, HIF-1α, and PPAR-γ in G6PT-deficient neutrophils and the effects of PPAR-γ antagonist/agonist on neutrophil function. Annexin V–depleted peripheral blood neutrophils isolated from HDs and GSD-Ib patients were used in the study. (A) Quantification of Hsp90 and HIF-1α mRNA levels by real-time RT-PCR and protein levels by densitometry. Data for RT-PCR represent the mean ± SEM for HDs (n = 10) and GSD-Ib patients (n = 12), and data for protein levels represent mean ± SEM for HDs (n = 11) and GSD-Ib patients (n = 7). (B) Western blot analysis of protein extracts using antibodies against Hsp90, HIF-1α, PPAR-γ, or β-actin. Data represent the mean ± SEM for HDs (n = 11) and GSD-Ib patients (n = 7). (C) Immunofluorescence of HIF-1α (green fluorescence) and DAPI nuclei staining (blue fluorescence) at original magnification ×400 and quantification of the relative integrated fluorescence intensity by ImageJ. (D) Quantification of PPAR-γ mRNA levels by real-time RT-PCR and protein levels by densitometry. Data for RT-PCR represent the mean ± SEM for HDs (n = 10) and GSD-Ib patients (n = 12), and data for PPAR-γ protein represent the mean ± SEM for HDs (n = 11) and GSD-Ib patients (n = 7). (E) Western blot analysis of the effects of G-CSF on PPAR-γ expression in HD neutrophils after in vitro culturing. (F) Effects of PPAR-γ agonist rosiglitazone and antagonist GW9662 on function of neutrophils isolated from HDs. Three independent experiments were conducted with similar results. Chemotaxis was examined in response to 10−7 M fMLP. Data represent the mean ± SEM. Calcium mobilization was examined in response to 10−7 M fMLP. Representative profiles are shown. Respiratory burst was examined in response to PMA. Representative profiles are shown. ○, control; ▲, PPAR-γ agonist rosiglitazone; ●, PPAR-γ agonist rosiglitazone followed by antagonist GW9662. (G) Effects of PPAR-γ antagonist GW9662 on function of G6PT-deficient neutrophils isolated from 2 GSD-Ib patients. Two independent experiments using neutrophils isolated from P11 and P14 were conducted. Chemotaxis was examined in response to 10−7 M fMLP. Data represent the mean ± SEM of both patients. Calcium mobilization was examined in response to 10−7 M fMLP. Respiratory burst was examined in response to PMA. ○, control; ●, PPAR-γ antagonist GW9662. **P < .005, *P < .05. Hyun Sik Jun et al. Blood 2014;123:2843-2853 ©2014 by American Society of Hematology

Inhibition of neutrophil function by PPAR-γ is mediated via HIF-1α signaling. Inhibition of neutrophil function by PPAR-γ is mediated via HIF-1α signaling. Annexin V–depleted peripheral blood neutrophils isolated from HDs were used in the study. (A) Effects of the PPAR-γ antagonist GW9662 on chemotaxis, calcium mobilization, and respiratory burst activities of neutrophils exposing to hypoxic conditions, and western blot analysis of protein extracts using antibodies against HIF-1α, PPAR-γ, or β-actin. Three independent experiments were conducted with similar results. ○, normoxia; ●, hypoxia; ▾, hypoxia and PPAR-γ antagonist GW9662. (B) Effects of the PPAR-γ antagonist GW9662 on chemotaxis, calcium mobilization, and respiratory burst activities of neutrophils exposed to the hypoxia mimetic CoCl2, and western blot analysis of protein extracts using antibodies against HIF-1α, PPAR-γ, or β-actin. Three independent experiments were conducted with similar results. ○, control; ●,CoCl2; ▾, CoCl2 and PPAR-γ antagonist GW9662. (C) Effects of HIF-α inhibitor 2-ME2 on chemotaxis, calcium mobilization, and respiratory burst activities of neutrophils exposed to hypoxic conditions, and western blot analysis of protein extracts using antibodies against HIF-1α, PPAR-γ or β-actin. Three independent experiments were conducted with similar results. ○, normoxia; ●, hypoxia; ▾, hypoxia and 2-ME2. Chemotaxis was examined in response to 10−7 M fMLP. Data represent the mean ± SEM. Calcium mobilization was examined in response to 10−7 M fMLP. Representative profiles are shown. Respiratory burst was examined in response to PMA. Representative profiles are shown. **P < .005, *P < .05. Hyun Sik Jun et al. Blood 2014;123:2843-2853 ©2014 by American Society of Hematology

Proposed mechanisms that underlie neutrophil dysfunction in GSD-Ib. Proposed mechanisms that underlie neutrophil dysfunction in GSD-Ib. Glucose transported into the cytoplasm via GLUT1 is metabolized by HK to G6P, which participates in 3 major pathways: glycolysis, the HMS, and ER cycling. In cycling, G6P enters the ER via G6PT, where it can accumulate until it is hydrolyzed to glucose by G6Pase-β and transported back into the cytoplasm. By limiting the cytoplasmic glucose/G6P availability, cycling regulates the other 2 cytoplasmic pathways for G6P metabolism. Disruption of ER cycling in G6PT-deficient neutrophils results in reduced glucose uptake and impaired energy homeostasis and functionality. The underlying cause of neutropenia in GSD-Ib is enhanced neutrophil ER stress and oxidative stress.10 The increases in Hsp90 and ROS in G6PT-deficient neutrophils stabilize HIF-1α, an upstream activator of PPAR-γ. The increase in PPAR-γ downregulates neutrophil respiratory burst, chemotaxis, and calcium mobilization activities. GLUT1, responsible for the transport of glucose in and out of the cell, is shown embedded in the plasma membrane. The G6PT, responsible for the transport of G6P into the ER, and G6Pase-β, responsible for hydrolyzing G6P to glucose and phosphate, are shown embedded in the ER membrane. Thick arrows indicate the changes caused by a defect in G6PT activity. Hyun Sik Jun et al. Blood 2014;123:2843-2853 ©2014 by American Society of Hematology