N. Tominaga, H. Umeda, K. Maeda, K. Nomoto (Univ. of Tokyo),

Slides:



Advertisements
Similar presentations
Stellar Structure Section 6: Introduction to Stellar Evolution Lecture 18 – Mass-radius relation for black dwarfs Chandrasekhar limiting mass Comparison.
Advertisements

Neutron Stars: Insights into their Formation, Evolution & Structure from their Masses and Radii Feryal Ozel University of Arizona In collaboration with.
T.P. Idiart  and J.A. de Freitas Pacheco   Universidade de São Paulo (Brasil)  Observatoire de la Côte d’Azur (France) Introduction Elliptical galaxies.
Compact remnant mass function: dependence on the explosion mechanism and metallicity Reporter: Chen Wang 06/03/2014 Fryer et al. 2012, ApJ, 749, 91.
Metal Poor Stars Jeff Cummings Indiana University April 15, 2005.
The evolution and collapse of BH forming stars Chris Fryer (LANL/UA)  Formation scenarios – If we form them, they will form BHs.  Stellar evolution:
From Progenitor to Afterlife Roger Chevalier SN 1987AHST/SINS.
Low-luminosity GRBs and Relativistic shock breakouts Ehud Nakar Tel Aviv University Omer Bromberg Tsvi Piran Re’em Sari 2nd EUL Workshop on Gamma-Ray Bursts.
‘Dark Side’ The ‘Dark Side’ of Gamma-Ray Bursts and Implications for Nucleosynthesis neutron capture elements (‘n-process’) light elements (spallation?)
New Frontiers in Nuclear and Particle Astrophysics: Time varying quarks MHD Jets Neutrino Mass Hierarchy G. J. Mathews – UND OMEG5-I Nov. 18, 2011 NAOJ,
Supernovae and GRB Connection Ken’ichi Nomoto (Univ. of Tokyo) MAGNUM (U. Tokyo)
Neutron Star Formation and the Supernova Engine Bounce Masses Mass at Explosion Fallback.
Supernovae of type Ia: the final fate of low mass stars in close bynary systems Oscar Straniero INAF – Oss. Astr. di Collurania (TE)
Exploding stars And the modeling of Dwarf galaxies
Collapse of Massive Stars A.MacFadyen Caltech. Muller (1999) “Delayed” SN Explosion acac Accretion vs. Neutrino heating Burrows (2001)
Supernovae Oscar Straniero INAF – Oss. Astr. di Collurania (TE)
Yutaka Komiya (National Astronomical Observatory of Japan) Takuma Suda (NAOJ), Masayuki Y. Fujimoto (Hokkai Gakuen Univ.)
1 Explosive nucleosynthesis in neutrino-driven, aspherical Pop. III supernovae Shin-ichiro Fujimoto (Kumamoto NCT, Japan) collaboration with M. Hashimoto.
The origin of the most iron - poor star Stefania Marassi in collaboration with G. Chiaki, R. Schneider, M. Limongi, K. Omukai, T. Nozawa, A. Chieffi, N.
Carbon-Enhanced Metal-Poor (CEMP) in the Milky Way KASI Seminar, May 27, 2015 Young Sun Lee Chungnam National University.
Abundance patterns of r-process enhanced metal-poor stars Satoshi Honda 1, Wako Aoki 2, Norbert Christlieb 3, Timothy C. Beers 4, Michael W.Hannawald 2.
Abundance Patterns to Probe Stellar Nucleosynthesis and Chemical Evolution Francesca Primas.
Collapsar Accretion and the Gamma-Ray Burst X-Ray Light Curve Chris Lindner Milos Milosavljevic, Sean M. Couch, Pawan Kumar.
Abel, Bryan, and Norman, (2002), Science, 295, 5552 density molecular cloud analog (200 K) shock 600 pc.
Unraveling the Galaxy to Find the First Stars: Nucleosynthesis at Z = 0... Jason Tumlinson Yale Center for Astronomy and Astrophysics... or, how I learned.
Observational Properties and Modelling of Hypernovae Jinsong Deng National Astronomical Observatories of China Collaborators: P. A. Mazzali (Trieste Obs.
Low-Mass Star Formation, Triggered by Supernova in Primordial Clouds Masahiro N. Machida (Chiba University) Kohji Tomisaka (NAOJ) Fumitaka Nakamura (Niigata.
Nature of Dust in the early universe Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators T. Kozasa,
Formation of Dust in Supernovae and Its Ejection into the ISM Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
Magneto-hydrodynamic Simulations of Collapsars Shin-ichiro Fujimoto (Kumamoto National College of Technology), Collaborators: Kei Kotake(NAOJ), Sho-ichi.
Evolution of Newly Formed Dust in Population III Supernova Remnants and Its Impact on the Elemental Composition of Population II.5 Stars Takaya Nozawa.
Stellar Spectroscopy and Elemental Abundances Definitions Solar Abundances Relative Abundances Origin of Elements 1.
Study of the type IIP supernova 2008gz Roy et al. 2011, MNRAS accepted.
TRENDS IN NICKEL & TITANIUM IN DUAL-SHOCK QUARK-NOVAE (ds-QNe) The Quark-Nova Project: Talk III R. Ouyed U. Calgary.
The First Cosmic Explosions Daniel Whalen McWilliams Fellow Carnegie Mellon University Chris Fryer, Lucy Frey LANL Candace Joggerst UCSC/LANL.
Origin of the elements  Which reactions  Which physical conditions  Which astrophysical sites  Which quantities Yields depend on reaction rates, M,
24 Apr 2003Astrogravs '031 Astrophysics of Captures Steinn Sigurdsson Dept Astro & Astrop, & CGWP Penn State.
Jeremy Ritter.  Theoretical “First Stars”, not observed  Formed from primordial Hydrogen and Helium  Zero metallicity  Studying chemical enrichment.
Metallicity Models: Evolving the Chemistry of the Universe.
The Critical Neutrino Luminosity and its Observational Signatures Ondřej Pejcha with Todd Thompson, Christopher Kochanek, Basudeb Dasgupta Department of.
Waseda univ. Yamada lab. D1 Chinami Kato
The Chemical Signatures of First-Generation Stars
Discovery of the Chemical Signature of First-Generation Massive Stars
Projjwal Banerjee (UC Berkeley) with
Star Formation Nucleosynthesis in Stars
The Fate of High-Mass Stars
Long GRB rate in the binary merger model
Stellar core collapse with QCD phase transition
Finding The First Cosmic Explosions
Mysterious Abundances in Metal-poor Stars & The ν-p process
Timothy C. Beers University of Notre Dame
New Trends of Physics 2005, Hokkaido University, March 1
Formation of Dust in the Ejecta of Type Ia Supernovae
Observations: Cosmic rays
The Interplay Between First Stars and Metal Enrichment
Supernovae as sources of interstellar dust
Dust in supernovae Takaya Nozawa
Supernova Nucleosynthesis and Extremely Metal-Poor Stars
Supernovae as sources of dust in the early universe
Single Vs binary star progenitors of Type Iib Sne
Nucleosynthesis in Early Massive Stars: Origin of Heavy Elements
Dust Enrichment by Supernova Explosions
Center for Computational Physics
Nucleosynthesis in jets from Collapsars
Pop III Black-hole-forming supernovae and Abundance pattern of Extremely Metal Poor Stars Hideyuki Umeda (梅田秀之) Dept. of Astronomy Univ.of Tokyo.
Takuma Suda, Asao Habe, Masayui Fujimoto (Hokkaido Univ.)
(National Astronomical Observatory of Japan)
Pair Instability Supernovae
Nucleosynthesis in Pop III, Massive and Low-Mass Stars
Formation and evolution of dust in hydrogen-poor supernovae
Presentation transcript:

Nucleosynthesis in Population III Supernovae and Abundance Patterns of Hyper Metal-Poor Stars N. Tominaga, H. Umeda, K. Maeda, K. Nomoto (Univ. of Tokyo), N. Iwamoto (JAERI)

Contents Hyper Metal-Poor stars Supernovae of Population III stars Comparison with abundance patterns of observed stars 1-Dimensinal Mixing-Fallback model 2-Dimensional Jet model

Hyper Metal-Poor Stars

Metal-Poor Stars Hyper Metal-Poor (HMP): Ultra Metal-Poor (UMP): [Fe/H]= log10(N(Fe)/N(H)) -log10(N(Fe)/N(H))8 Hyper Metal-Poor (HMP): Ultra Metal-Poor (UMP): Extremely Metal-Poor (EMP) : Very Metal-Poor (VMP): Solar: [Fe/H] < -5 [Fe/H] < -4 [Fe/H] < -3 [Fe/H] < -2 [Fe/H] ~ 0 (Beers & Christlieb 2005) Compare with results of nucleosynthesis calculations.

Metal-Poor Stars-2 Reflect abundance patterns of the early Universe The abundance patterns of ejecta from Pop III or Pop II SNe A gap exists between EMP stars and HMP stars. HMP [Fe/H] < -3 stars: Individual SN yields [Fe/H] ~ -2.5 stars: IMF integrated yield of PopIII (or EMP) SNe UMP C-rich EMP EMP

Population III Supernovae

Population III Supernovae Pair-Instability Supernovae 140~300M8 Evolution H He Observationally no evidence H,He O Si Fe Pop III stars 11M8~130M8 BH/NS Core-Collapse Supernovae

Explosion and Mass Cut Post-shock T T∝R-3/4E1/4 High T (T>5×109K) Shock Propagation Post-shock T T∝R-3/4E1/4 Mass Cut Mcut Fe High T (T>5×109K) Fe,α,Ti,Zn,Co,V Middle T (>T>4×109K) Fe,Si,Cr,Mn Low T (>T>3×109K) Si The boundary between the ejecta and the central remnant

Hypernova and faint SN Hypernova Branch Faint SN Branch Nomoto et al. 2003 (astro-ph/0308136) Hypernova Branch Faint SN Branch

Comparison with Abundance Patterns of Observed Stars HMP stars HE0107-5240 (Cristlieb et al. 2002) HE1327-2326 (Frebel, Aoki, et al. 2005) C-rich EMP stars CS29498-043 (Aoki et al. 2004) EMP stars -4.2<[Fe/H]<-3.5 (Cayrel et al. 2004) VMP stars -2.7<[Fe/H]<-2.0 (Cayrel et al. 2004)

1-Dimensional Mixing-Fallback Model

EMP Stars -4.2<[Fe/H]<-3.5 Hypernova Model: M=25M☉, 2×1052erg Tominaga et al. 2005

Mixing-Fallback Model Mixing region Fallback Fe BH Mixing Region f : ejection factor Mixing Umeda & Nomoto 2002 Fallback

EMP Stars f=0.1 -4.2<[Fe/H]<-3.5 Hypernova M=25M8,1×1051erg Normal SN -4.2<[Fe/H]<-3.5 f=0.1 Hypernova Model: M=25M☉, 2×1052erg Tominaga et al. 2005

C-rich EMP Stars f~10-3 CS29498-043 Model: M=50M☉, 5×1052erg Umeda & Nomoto 2005

VMP Stars -2.7<[Fe/H]<-2.0 Model: Z=0 IMF integrated (11~70M8) Tominaga et al. 2005

Conclusion (Mixing-Fallback model) Faint SN Normal SN + Hypernova Faint SN Hypernova Mass Energy (1051erg) f M(Fe) Stars Hypernova 25~50? 20~40 0.1 0.1~0.2 EMP Faint SN (EMP) 25~100? <1 10-3 0.01 C-rich EMP Faint SN (HMP) 10-5 HMP Normal SN 13~20 1 0.07 VMP ~ ~

2-Dimensional Jet-induced Model

Massive Stars Explosion Central Remnant <25M8 Neutron Star 25M8< Black Hole BH/NS Massive stars (M>25M8) Spherical explosion Never succeeded, except for Wilson 1985 Jet-like explosion Collapsar Model (MacFadyen, Woosley, & Heger 2001)

Jet-induced explosion Tominaga et al. 2005 Jet Jet Hydrodynamics of relativistic jets Nucleosynthesis BH BH Progenitor cf. Collapsar model (MacFadyen, Woosley, & Heger 2001) MMS=40M8 . Mcut (Mcut=1.75M8) θjet (θjet=5°) vjet (vjet=0.98c, Γjet=5) Ejet (Ejet= Ejet×tjet=1.5×1052erg) fth (fth=Eth/ Ejet=10-3) Ejet: Energy injection rate (Rotation etc.) .

Multi-dimensional relativistic hydrodynamics ←Lorentz factor Conserved quantity (D,S1,S2,S3,τ) ←Density ←Momentum ←Energy ←Equation of continuity ←Conservation of momentum ← Conservation of energy Marti & Muller 1994 ¨

Density structure 1s after 3s after 5s after 10s after

Fallback-Ejection . 1D: ejection factor f 2D: Ejet Fallback He Jet materials : O/C Jet fallen-back materials ejected as jets O/Mg Si stellar materials : Fe Fallback materials outside the fallback region

After explosion (100sec) log scale Jet materials Density structure 12 Fe Density structure 11 Fe Stellar materials linear scale Fallback 10 10 10.5 11 11.5 12 log10(R)

. Dependence: Ejet . . . . . Ejet↓: Fallback↑ M(Fe)↓ [X/Fe]↑ Ejet,51=Ejet/1051erg/s . . Ejet,51=15 Ejet,51=0.3 He O/C O/Mg Si Fallback Fallback Fe

. Dependence: Ejet . . EMP stars C-rich EMP stars CS29498-043 EMP stars Ejet,51=15 -4.2<[Fe/H]<-3.5

Conclusion . . . . . . . (Jet Model) MP stars C-rich EMP MP stars EMP stars: Ejet,51=15 C-rich EMP stars: Ejet,51~1 HMP stars: Ejet,51=0.15 UMP stars (-5<[Fe/H]<-4) EMP stars: Ejet,51>1 HMP stars: Ejet,51<0.5 . Abundance ratio [X/Y] . . HMP Ejet,51 EMP . M(Fe)star M(Fe)jet EMP UMP Fe Mass [M8] . Few stars . HMP . Ejet,51

Summary Both of the 1D & 2D models can reproduce the observations. 1D 2D HMP f=10-5 Ejet,51<0.5 UMP 10-5<f<10-3 0.5<Ejet,51<1 C-rich EMP f=10-3 Ejet,51~1 EMP f=0.1 Ejet,51~10 . . . . The properties of 2D Jet model The f in 1D model corresponds to the Ejet. The absence of UMP stars can be understood by the narrow range of Ejet. . .