Cross-validation and Local Regression Lab

Slides:



Advertisements
Similar presentations
RECITATION 1 APRIL 14 Lasso Smoothing Parameter Selection Splines.
Advertisements

1 Peter Fox Data Analytics – ITWS-4963/ITWS-6965 Week 3b, February 7, 2014 Lab exercises: datasets and data infrastructure.
Spline and Kernel method Gaussian Processes
1 Peter Fox Data Analytics – ITWS-4963/ITWS-6965 Week 11a, April 14, 2015 Interpreting cross-validation, bootstrapping, bagging, boosting, etc.
1 Peter Fox Data Analytics – ITWS-4963/ITWS-6965 Week 13a, April 22, 2014 Boosting, dimension reduction and a preview of the return to Big Data.
August 25, 2009Session 1aSlide 1 PSC 5940: Workshop on Quantitative Research Session 1 Fall, 2009.
Web Application Vulnerabilities ECE 4112 Internetwork Security, Spring 2005 Chris Kelly Chris Lewis April 28, 2005 ECE 4112 Internetwork Security, Spring.
TEXT ANALYTICS - LABS Maha Althobaiti Udo Kruschwitz Massimo Poesio.
Geology 1023 Environments & Facies. Sediments are being deposited in various locations simultaneously Conditions vary from place to place –Medium –Speed.
1 Peter Fox Data Analytics – ITWS-4600/ITWS-6600 Week 3b, February 12, 2016 Lab exercises /assignment 2.
1 Peter Fox Data Analytics – ITWS-4600/ITWS-6600 Week 12a, April 19, 2016 Cross-validation, Revisiting Regression – local models, and non-parametric…
1 Peter Fox Data Analytics – ITWS-4600/ITWS-6600 Week 12b, April 22, 2016 Cross-validation and Local Regression Lab.
Peter Fox and Greg Hughes Data Analytics – ITWS-4600/ITWS-6600
Ggplot2 Wu Shaohuan.
Data Analytics – ITWS-4600/ITWS-6600
Peter Fox and Greg Hughes Data Analytics – ITWS-4600/ITWS-6600
Lab exercises: beginning to work with data: filtering, distributions, populations, significance testing… Peter Fox and Greg Hughes Data Analytics – ITWS-4600/ITWS-6600.
Group 1 Lab 2 exercises /assignment 2
National Taiwan University
Classification, Clustering and Bayes…
Data Analytics – ITWS-4963/ITWS-6965
Labs: Dimension Reduction, Factor Analysis
Labs: Dimension Reduction, Factor Analysis
Peter Fox Data Analytics – ITWS-4600/ITWS-6600 Week 9b, April 1, 2016
Basic Factoring Review
Data Analytics – ITWS-4600/ITWS-6600/MATP-4450
Data Analytics – ITWS-4600/ITWS-6600/MATP-4450
Group 1 Lab 2 exercises and Assignment 2
Peter Fox and Greg Hughes Data Analytics – ITWS-4600/ITWS-6600
Digital Cross Sections Lab
bell ringer 1. What solids can have a circle for a base?
Data Analytics – ITWS-4600/ITWS-6600/MATP-4450
What are the characteristics of light? How does light behave?
A Gentle Introduction to R from a SAS Programmer’s Perspective
التدريب الرياضى إعداد الدكتور طارق صلاح.
علم النفس التحليلي كارل غوستاف يونغ
INTEGRATED SERVICES IN CHEMICAL DEVELOPMENT
Classification, Clustering and Bayes…
Assignment 2 (in lab) Peter Fox and Greg Hughes
Data Analytics – ITWS-4600/ITWS-6600/MATP-4450
Lab: geostatistics Peter Fox GIS for Science ERTH 4750 (98271)
Volume 365, Issue 9466, Pages (April 2005)
Section 5.3A: Similar Triangles
Local Regression, LDA, and Mixed Model Lab
ITWS-4600/ITWS-6600/MATP-4450/CSCI-4960
Lab weighted kNN, decision trees, random forest (“cross-validation” built in – more labs on it later in the course) Peter Fox and Greg Hughes Data Analytics.
ITWS-4600/ITWS-6600/MATP-4450/CSCI-4960
Cross section: Triangle
Cross-validation Brenda Thomson/ Peter Fox Data Analytics
2/28/2019 Exercise 1 In the bcmort data set, the four-level factor cohort can be considered the product of two two-level factors, say “period” (
Peter Fox Data Analytics – ITWS-4600/ITWS-6600 Week 10b, April 8, 2016
Cross-validation and Local Regression Lab
Cross-validation and Local Regression Lab
Analysis for Predicting the Selling Price of Apartments Pratik Nikte
Classification, Clustering and Bayes…
Local Regression, LDA, and Mixed Model Lab
Geology 1023 Environments & Facies.
Data Analytics – ITWS-4600/ITWS-6600/MATP-4450
Building a map for presentation from scratch
ITWS-4600/ITWS-6600/MATP-4450/CSCI-4960
Group 1 Lab 2 exercises and Assignment 2
Data Analytics course.
Calculus W 11 April 2012.
Calculus W 18 April 2012.
Python Reserved Words Poster
Online Pogo Game Customer Service
Pogo Game Customer Care Helpline Number

Call Pogo Contact Phone Number and Enjoy Pogo Game
Presentation transcript:

Cross-validation and Local Regression Lab Peter Fox and Greg Hughes Data Analytics – ITWS-4600/ITWS-6600 Group 4 Lab 1, April 6, 2017

Diamonds require(ggplot2) # or load package first data(diamonds) head(diamonds) # look at the data! # ggplot(diamonds, aes(clarity, fill=cut)) + geom_bar() ggplot(diamonds, aes(clarity)) + geom_bar() + facet_wrap(~ cut) ggplot(diamonds) + geom_histogram(aes(x=price)) + geom_vline(xintercept=12000) ggplot(diamonds, aes(clarity)) + geom_freqpoly(aes(group = cut, colour = cut))

Cross-validation - cvTools group4/lab1_cv{1,18}.R – try params

Smoothing/ local … http://cran.r-project.org/doc/contrib/Ricci-refcard-regression.pdf Review this and apply to datasets in labs…

Scripts in the usual place group4/lab1_svmreg*.R group4/lab1_knnreg*.R group4/lab1_loess*.R group4/lab1_pls*.R group4/lab1_lplm*.R group4/lab1_quant*.R group4/lab1_ridge*.R group4/lab1_splines*.R