Frequency-based optical spectroscopy

Slides:



Advertisements
Similar presentations
D. Chris Benner and V Malathy Devi College of William and Mary Charles E. Miller, Linda R. Brown and Robert A. Toth Jet Propulsion Laboratory Self- and.
Advertisements

Figure 19: Plot and frequency analysis for modifications to Skogestad’s settings for G 1 (s). (setpoint step = 1, disturbance step = 1)
Sub-Doppler Resolution Spectroscopy of the fundamental band of HCl with an Optical Frequency Comb ○ K. Iwakuni, M. Abe, and H. Sasada Department of Physics,
Tunable Laser Spectroscopy Referenced with Dual Frequency Combs International Symposium on Molecular Spectroscopy 2010 Fabrizio Giorgetta, Ian Coddington,
PRECISION CAVITY ENHANCED VELOCITY MODULATION SPECTROSCOPY Andrew A. Mills, Brian M. Siller, Benjamin J. McCall University of Illinois, Department of Chemistry.
Dual-Comb Spectroscopy of C2H2, CH4 and H2O over 1.0 – 1.7 μm
MULTIPLEXED CHIRPED PULSE QUANTUM CASCADE LASER MEASUREMENTS OF AMMONIA AND OTHER SMALL MOLECULES Craig Picken, David Wilson, Nigel Langford and Geoffrey.
P247. Figure 9-1 p248 Figure 9-2 p251 p251 Figure 9-3 p253.
MID-IR SATURATION SPECTROSCOPY OF HeH + MOLECULAR ION HSUAN-CHEN CHEN,CHUNG-YUN HSIAO Institute of Photonics Technologies, National Tsing Hua University,
ANATAC Meeting Line Length Correction Status 2004-Apr-23.
Spectroscopy with comb-referenced diode lasers
New High Precision Linelist of H 3 + James N. Hodges, Adam J. Perry, Charles R. Markus, Paul A. Jenkins II, G. Stephen Kocheril, and Benjamin J. McCall.
High Precision Mid-Infrared Spectroscopy of 12 C 16 O 2 : Progress Report Speaker: Wei-Jo Ting Department of Physics National Tsing Hua University
Infrared Spectroscopy and Mass Spectroscopy
to Optical Atomic Spectroscopy
Pressure Broadening and Spectral Overlap in the Millimeter Wave Spectrum of Ozone International Symposium on Molecular Spectroscopy 65 th Meeting — June.
Fukuoka Univ. A. Nishiyama, A. Matsuba, M. Misono Doppler-Free Two-Photon Absorption Spectroscopy of Naphthalene Assisted by an Optical Frequency Comb.
__–––– Sensitivity Scaling of Dual Frequency Combs Ian Coddington, Esther Baumann, Fabrizio Giorgetta, William Swann, Nate Newbury NIST, Boulder, CO
The effective Hamiltonian for the ground state of 207 Pb 19 F and the fine structure spectrum Trevor J. Sears Brookhaven National Laboratory and Stony.
HIGH RESOLUTION SPECTROSCOPY USING A TUNABLE THz SYNTHESIZER BASED ON PHOTOMIXING Arnaud Cuisset, Laboratoire de Physico-Chimie de l’Atmosphère, Maison.
Broadband Mid-infrared Comb-Resolved Fourier Transform Spectroscopy Kevin F. Lee A. Mills, C. Mohr, Jie Jiang, Martin E. Fermann P. Masłowski.
Lineshape and Sensitivity of Spectroscopic Signals of N 2 + in a Positive Column Collected Using NICE-OHVMS Michael Porambo, Andrew Mills, Brian Siller,
Yu. I. BARANOV, W. J. LAFFERTY, and G. T. Fraser Optical Technology Division Optical Technology Division National Institute of Standards and Technology,
HIGH PRECISION MID-IR SPECTROSCOPY OF N2O NEAR 4.5 μm Wei-jo (Vivian) Ting and Jow-Tsong Shy Department of Physics National Tsing Hua University Hsinchu,
Precision Measurement of CO 2 Hotband Transition at 4.3  m Using a Hot Cell PEI-LING LUO, JYUN-YU TIAN, HSHAN-CHEN CHEN, Institute of Photonics Technologies,
Atomic Fluorescence Spectroscopy. Background l First significant research by Wineforder and Vickers in 1964 as an analytical technique l Used for element.
Precision Laser Spectroscopy of H 3 + Hsuan-Chen Chen 1, Jin-Long Peng 2, Takayoshi Amano 3,4, Jow-Tsong Shy 1,5 1 Institute of Photonics Technologies,
2002 LHC days in Split Sandra Horvat 08 – 12 October, Ruđer Bošković Institute, Zagreb Max-Planck-Institute for Physics, Munich Potential is here...
High Precision Infrared Spectroscopy of OH + Charles R. Markus, Adam J. Perry, James N. Hodges, G. Stephen Kocheril, Paul A. Jenkins II, Benjamin J. McCall.
Tze-Wei Liu Y-C Hsu & Wang-Yau Cheng
California Institute of Technology
Broadband Comb-resolved Cavity Enhanced Spectrometer with Graphene Modulator C.-C. Lee, T. R. Schibli Kevin F. Lee C. Mohr, Jie Jiang, Martin E. Fermann.
OBSERVATION AND ANALYSIS OF THE A 1 -A 2 SPLITTING OF CH 3 D M. ABE*, H. Sera and H. SASADA Department of Physics, Faculty of Science and Technology, Keio.
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
Frequency-comb referenced spectroscopy of v 4 =1 and v 5 =1 hot bands in the 1. 5 µm spectrum of C 2 H 2 Trevor Sears Greg Hall Talk WF08, ISMS 2015 Matt.
I. GALLI, S. BARTANLINI, S. BORRI, P. CANCIO, D. MAZZOTTI, P.DE NATALE, G. GIUSFREDI Molecular Gas Sensing Below Parts Per Trillion: Radiocarbon-Dioxide.
INDIRECT TERAHERTZ SPECTROSCOPY OF MOLECULAR IONS USING HIGHLY ACCURATE AND PRECISE MID-IR SPECTROSCOPY Andrew A. Mills, Kyle B. Ford, Holger Kreckel,
Sub-Doppler Spectroscopy of H 3 + James N. Hodges, Adam J. Perry, Brian M. Siller, Benjamin J. McCall.
TJ02 3-D SUBMILLIMETER SPECTROSCOPY OF ASTRONOMICAL `WEEDS‘ - EXPERIMENTAL AND THEORETICAL ASPECTS OF DATA PROCESSING AND CATALOGING –> TJ03 Ivan R. Medvedev,
Quantum Optics meets Astrophysics Frequency Combs for High Precision Spectroscopy in Astronomy T. Wilken, T. Steinmetz, R. Probst T.W. Hänsch, R. Holzwarth,
Initial Development of High Precision, High Resolution Ion Beam Spectrometer in the Near- Infrared Michael Porambo, Brian Siller, Andrew Mills, Manori.
Concentration Dependence of Line Shapes in the Band of Acetylene Matthew Cich, Damien Forthomme, Greg Hall, Chris McRaven, Trevor Sears, Sylvestre.
High Precision Mid-IR Spectroscopy of 12 C 16 O 2 : ← Band Near 4.3 µm Jow-Tsong Shy Department of Physics, National Tsing Hua University,
High Precision Spectroscopy of CH 5 + with NICE-OHVMS James N. Hodges, Adam J. Perry and Benjamin J. McCall.
Optical Frequency Comb Referenced Sub-Doppler Resolution Difference-Frequency-Generation Infrared Spectroscopy K. Iwakuni, S. Okubo, H. Nakayama, and H.
R.K. Altmann, L.S. Dreissen, S. Galtier and K.S.E. Eikema
Weeding the Astrophysical Garden Using Complete Experimental Spectra
M. Faheem, R. Thapa, and Kristan L. Corwin Kansas State University
Doppler-free two-photon absorption spectroscopy of vibronic excited states of naphthalene assisted by an optical frequency comb UNIV. of Electro-Communications.
Figure 6(a) High-resolution optical spectrum of the optical comb when the MLL is hybrid mode-locked (inset: magnification of the optical spectrum). (b)
The Near-IR Spectrum of CH3D
Z. Reed,* O. Polyansky,† J. Hodges*
A THz PHOTOMIXING SYNTHESIZER BASED ON A FIBER FREQUENCY COMB DEDICATED TO HIGH RESOLUTION SPECTROSCOPY OF ATMOSPHERIC COMPOUNDS Arnaud Cuisset, Laboratoire.
Suzanne Kiihne, Robert G. Bryant  Biophysical Journal 
University of Arizona, Dept. of Physics
Laura Kranendonk and Scott T. Sanders
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall
APPLICATION OF DIAGNOSTICS TO CHALLENGING DISCHARGE ENVIRONMENTS
Figure 19: Plot and frequency analysis for modifications to Skogestad’s settings for G1(s). (setpoint step = 1, disturbance step = 1)
Measured Period VOICE SIGNAL
14 October 2009 Chapter 7 Sensory Physiology.
d'Opale, F Dunkerque, France,
Figure 1 Aggregate Brand-Switching (Transition) Matrix
Chapter 11 Bradt Notes ASTR 402 Dr. H. Geller
ANH T. LE, GREGORY HALL, TREVOR SEARSa Department of Chemistry
different predicted values (D)
by William T. S. Cole, James D. Farrell, David J. Wales, and Richard J
Chapter 2 Limits.
Scott M. Blackman, Eric J. Hustedt, Charles E. Cobb, Albert H. Beth 
Presentation transcript:

Frequency-based optical spectroscopy Trevor J. Sears 649.00 649.50 650.00 Frequency – 195 739 000.00 MHz Frequency comb-based techniques are going to revolutionize many aspects of spectroscopy in the next decade. Top figure shows a measurement of the P(11) line in the 1.5 micron band of C2H2 with accuracy and precision of 4x1011. Lower figure shows a nitrogen pressure broadened measurement of same line at 240K. The inset is a plot of the residuals following a fit to a model function showing the quality of the data.