Slides:



Advertisements
Similar presentations
Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3.
Advertisements

Vertex Function of Gluon-Photon Penguin Swee-Ping Chia High Impact Research, University of Malaya Kuala Lumpur, Malaysia
1 Top Production Processes at Hadron Colliders By Paul Mellor.
The regularization dependence on the phase diagram in the Nambu-Jona-Lasinio model Hiroaki Kohyama (CYCU)
QCD-2004 Lesson 1 : Field Theory and Perturbative QCD I 1)Preliminaries: Basic quantities in field theory 2)Preliminaries: COLOUR 3) The QCD Lagrangian.
Lattice Spinor Gravity Lattice Spinor Gravity. Quantum gravity Quantum field theory Quantum field theory Functional integral formulation Functional integral.
January 16, 2001Physics 8411 Introduction to Feynman Diagrams and Dynamics of Interactions All known interactions can be described in terms of forces forces:
Feynman Diagrams.
2-nd Vienna Central European Seminar, Nov 25-27, Rare Meson Decays in Theories Beyond the Standard Model A. Ali (DESY), A. V. Borisov, M. V. Sidorova.
quarks three families Standard - Theory III II I.
Beyond Feynman Diagrams Lecture 2 Lance Dixon Academic Training Lectures CERN April 24-26, 2013.
The World Particle content. Interactions Schrodinger Wave Equation He started with the energy-momentum relation for a particle he made the quantum.
Announcements Homework returned now 9/19 Switching to more lecture-style class starting today Good luck on me getting powerpoint lectures ready every day.
10.4 Addition and Subtraction: Like Denominators Goal: to add and subtract rational expressions with like denominators.
Announcements 10/22 Today: Read 7D – 7F Wednesday: 7.3, 7.5, 7.6 Friday: 7.7, 9, 10, 13 On Web Exam 1 Solutions to Exam 1.
Locality,Lorentz inv.gauge inv. spinor   vector A  interaction reprensatationperturbation S-matrix provability Wick's theorem.
N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures, II Fall Term 2004.
Three partons in kT factorization Hsiang-nan Li Academia Sinica May 16, 2012 Ref: Chen and Li, ;
Add & Subtract Rationals – Common Denominator To add or subtract rational expressions with common denominators: 1) Add or subtract the numerators 2) Write.
3-5 Adding and Subtracting Like Fractions. Add Like Fractions Like fractions are fractions with the same denominator. Key Concept: Adding Like Fractions.
The SAMPER project (Semi-numerical AMPlitude EvaluatoR) W. Giele, TeV4LHC, 20/10/05 Giulia Zanderighi, Keith Ellis and Walter Giele. hep-ph/ hep-ph/
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
MadGraph/MadEvent Automatically Calculate 1-Loop Cross Sections !
Markus Quandt Quark Confinement and the Hadron Spectrum St. Petersburg September 9,2014 M. Quandt (Uni Tübingen) A Covariant Variation Principle Confinement.
K p k'k' p'p'  probability amplitude locality,Lorentz inv.gauge inv. spinor   vector A  T  electron quark scattering scattering cross section Feynman.
1 Methods of Experimental Particle Physics Alexei Safonov Lecture #3.
Announcements 11/7 Today: 8.9, 8.11 Friday: 9.1, 9.2, 9.4 Monday: 9D-9F 9.4 Draw at least thirteen tree-level Feynman diagrams for the process qq*  gg,
Feynman Diagrams Topic 7.3.
Lecture 2 - Feynman Diagrams & Experimental Measurements
2006 5/19QCD radiative corrections1 QCD radiative corrections to the leptonic decay of J/ψ Yu, Chaehyun (Korea University)
On the Drell-Levy-Yan Relation for Fragmentation Functions T. Ito, W.Bentz(Tokai Univ.) K.Yazaki (Tokyo Woman’s University, and RIKEN) A.W.Thomas (JLab)
Introduction to QED Quantum Electrodynamics Part II.
Adler-Bardeen Theorem for the Axial Anomaly and the First Moment of the Polarized Virtual Photon Structure Function Takahiro Ueda (Yokohama National Univ.)
Lecture 4 – Quantum Electrodynamics (QED)
Song He Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing.
WEAK DECAYS: ALL DRESSED UP
Handout 3 : Interaction by Particle Exchange and QED
Lecture 3 Weak Interactions (continued) muon decay Pion decay
NGB and their parameters
Addition and Subtraction Formulas
Derivation of Electro-Weak Unification and Final Form of Standard Model with QCD and Gluons  1W1+  2W2 +  3W3.
Reference: “The Standard Model Higgs Boson” by Ivo van Vulpen,
Lecture 2 Evolution and resummation
Evaluating Semi-Analytic NLO Cross-Sections
Lecture 10: Standard Model Lagrangian
Lecture 14 – Neutral currents and electroweak unification
By: Christopher Hayes November 29, 2012
Announcements Exam Details: Today: Problems 6.6, 6.7
Sum and Difference Identities for the Sin Function
Standard Model of Particles
Supersymmetric Quantum Mechanics
Chapter V Interacting Fields Lecture 7 Books Recommended:
Adnan Bashir, UMSNH, Mexico
Explicitly expressed in
Adnan Bashir, UMSNH, Mexico
Review of Interacting Felds and Feynman Digrams
B physics at hadron collider
Lecture 2: Invariants, cross-section, Feynman diagrams
It means anything not quadratic in fields and derivatives.
Determination of Higgs branching ratio into
Gluon Gluon to jpsi jpsi
helicity distribution and measurement of N spin
Factorization in some exclusive B meson decays
11. Space Inversion Invariance
Bellwork  .
Lecture 12 Halzen & Martin Chapter 6
10.4 Products & Quotients of Complex Numbers in Polar Form
Radiative corrections in Kl3 decays
Leptonic Charged-Current Interactions
Examples of QED Processes
Presentation transcript:

𝐻𝑖𝑔𝑔𝑠 𝑑𝑒𝑐𝑎𝑦 𝑡𝑜 𝑡𝑤𝑜 𝑔𝑙𝑢𝑜𝑛𝑠 𝐸𝑙𝑒𝑓𝑡ℎ𝑒𝑟𝑖𝑜𝑠 𝑀𝑜𝑠𝑐ℎ𝑎𝑛𝑑𝑟𝑒𝑜𝑢

The decay rate 𝑑Γ= 1 2 𝑚 ℎ 𝑑 3 𝑝 2𝜋 3 1 2 𝐸 𝑝 ⋅ 𝑑 3 𝑘 2𝜋 3 1 2 𝐸 𝑘 𝑀 𝑚 ℎ →𝑝,𝑘 2 2𝜋 4 𝛿 4 ( 𝑚 ℎ −𝑝−𝑘)

The decay rate 𝑑Γ= 1 2 𝑚 ℎ 𝑑 3 𝑝 2𝜋 3 1 2 𝐸 𝑝 ⋅ 𝑑 3 𝑘 2𝜋 3 1 2 𝐸 𝑘 𝑀 𝑚 ℎ →𝑝,𝑘 2 2𝜋 4 𝛿 4 ( 𝑚 ℎ −𝑝−𝑘)

Lorentz Invariant Phase Space The decay rate 𝑑Γ= 1 2 𝑚 ℎ 𝑑 3 𝑝 2𝜋 3 1 2 𝐸 𝑝 ⋅ 𝑑 3 𝑘 2𝜋 3 1 2 𝐸 𝑘 𝑀 𝑚 ℎ →𝑝,𝑘 2 2𝜋 4 𝛿 4 ( 𝑚 ℎ −𝑝−𝑘) Lorentz Invariant Phase Space

The decay rate 𝑑Γ= 1 2 𝑚 ℎ 𝑑 3 𝑝 2𝜋 3 1 2 𝐸 𝑝 ⋅ 𝑑 3 𝑘 2𝜋 3 1 2 𝐸 𝑘 𝑀 𝑚 ℎ →𝑝,𝑘 2 2𝜋 4 𝛿 4 ( 𝑚 ℎ −𝑝−𝑘)

Decay amplitude. Describes the interactions during the decay. The decay rate 𝑑Γ= 1 2 𝑚 ℎ 𝑑 3 𝑝 2𝜋 3 1 2 𝐸 𝑝 ⋅ 𝑑 3 𝑘 2𝜋 3 1 2 𝐸 𝑘 𝑀 𝑚 ℎ →𝑝,𝑘 2 2𝜋 4 𝛿 4 ( 𝑚 ℎ −𝑝−𝑘) Decay amplitude. Describes the interactions during the decay.

The Feynman diagrams

Gluons are massless. They don’t interact with the Higgs! The Feynman diagrams Gluons are massless. They don’t interact with the Higgs!

Interaction occurs through a fermion (quark) loop The Feynman diagrams Interaction occurs through a fermion (quark) loop

From the Feynman diagram to the decay amplitude 𝑀=

From the Feynman diagram to the decay amplitude 𝑀=−𝑖 𝑚 𝑞 𝜐 (−1)

From the Feynman diagram to the decay amplitude l + p l l - k 𝑀=−𝑖 𝑚 𝑞 𝜐 −1 𝑇𝑟 𝑖 𝑙−𝑘+ 𝑚 𝑞 𝑙−𝑘 2 − 𝑚 𝑞 +𝑖𝜀

From the Feynman diagram to the decay amplitude l + p l l - k 𝑀=−𝑖 𝑚 𝑞 𝜐 −1 𝑇𝑟 𝑖 𝑙−𝑘+ 𝑚 𝑞 𝑙−𝑘 2 − 𝑚 𝑞 +𝑖𝜀 ⋅𝑖 𝑔 𝑠 𝛾 𝜈 𝑡 𝑎

From the Feynman diagram to the decay amplitude l + p l l - k 𝑀=−𝑖 𝑚 𝑞 𝜐 −1 𝑇𝑟 𝑖 𝑙−𝑘+ 𝑚 𝑞 𝑙−𝑘 2 − 𝑚 𝑞 +𝑖𝜀 ⋅𝑖 𝑔 𝑠 𝛾 𝜈 𝑡 𝑎 ⋅ 𝑖 𝑙+ 𝑚 𝑞 𝑙 2 − 𝑚 𝑞 +𝑖𝜀

From the Feynman diagram to the decay amplitude l + p l l - k 𝑀=−𝑖 𝑚 𝑞 𝜐 −1 𝑇𝑟 𝑖 𝑙−𝑘+ 𝑚 𝑞 𝑙−𝑘 2 − 𝑚 𝑞 +𝑖𝜀 ⋅𝑖 𝑔 𝑠 𝛾 𝜈 𝑡 𝑎 ⋅ 𝑖 𝑙+ 𝑚 𝑞 𝑙 2 − 𝑚 𝑞 +𝑖𝜀 ⋅𝑖 𝑔 𝑠 𝛾 𝜈 𝑡 𝑏

From the Feynman diagram to the decay amplitude l + p l l - k 𝑀=−𝑖 𝑚 𝑞 𝜐 −1 𝑇𝑟 𝑖 𝑙−𝑘+ 𝑚 𝑞 𝑙−𝑘 2 − 𝑚 𝑞 +𝑖𝜀 ⋅𝑖 𝑔 𝑠 𝛾 𝜈 𝑡 𝑎 ⋅ 𝑖 𝑙+ 𝑚 𝑞 𝑙 2 − 𝑚 𝑞 +𝑖𝜀 ⋅𝑖 𝑔 𝑠 𝛾 𝜈 𝑡 𝑏 ⋅ 𝑖 𝑙+𝑝+ 𝑚 𝑞 𝑙+𝑝 2 − 𝑚 𝑞 +𝑖𝜀

From the Feynman diagram to the decay amplitude l + p l l - k 𝑀=−𝑖 𝑚 𝑞 𝜐 −1 𝑇𝑟 𝑖 𝑙−𝑘+ 𝑚 𝑞 𝑙−𝑘 2 − 𝑚 𝑞 +𝑖𝜀 ⋅𝑖 𝑔 𝑠 𝛾 𝜈 𝑡 𝑎 ⋅ 𝑖 𝑙+ 𝑚 𝑞 𝑙 2 − 𝑚 𝑞 +𝑖𝜀 ⋅𝑖 𝑔 𝑠 𝛾 𝜈 𝑡 𝑏 ⋅ 𝑖 𝑙+𝑝+ 𝑚 𝑞 𝑙+𝑝 2 − 𝑚 𝑞 +𝑖𝜀 ×𝜖 𝜈 ∗𝜆 ′ 𝑘

From the Feynman diagram to the decay amplitude l + p l l - k 𝑀=−𝑖 𝑚 𝑞 𝜐 −1 𝑇𝑟 𝑖 𝑙−𝑘+ 𝑚 𝑞 𝑙−𝑘 2 − 𝑚 𝑞 +𝑖𝜀 ⋅𝑖 𝑔 𝑠 𝛾 𝜈 𝑡 𝑎 ⋅ 𝑖 𝑙+ 𝑚 𝑞 𝑙 2 − 𝑚 𝑞 +𝑖𝜀 ⋅𝑖 𝑔 𝑠 𝛾 𝜈 𝑡 𝑏 ⋅ 𝑖 𝑙+𝑝+ 𝑚 𝑞 𝑙+𝑝 2 − 𝑚 𝑞 +𝑖𝜀 ×𝜖 𝜈 ∗𝜆 ′ 𝑘 𝜖 𝜇 ∗𝜆 𝑝

From the Feynman diagram to the decay amplitude l + p l l - k 𝑀=−𝑖 𝑚 𝑞 𝜐 −1 ∫ 𝒅 𝟒 𝒍 𝟐𝝅 𝟒 𝑇𝑟 𝑖 𝑙−𝑘+ 𝑚 𝑞 𝑙−𝑘 2 − 𝑚 𝑞 +𝑖𝜀 ⋅𝑖 𝑔 𝑠 𝛾 𝜈 𝑡 𝑎 ⋅ 𝑖 𝑙+ 𝑚 𝑞 𝑙 2 − 𝑚 𝑞 +𝑖𝜀 ⋅𝑖 𝑔 𝑠 𝛾 𝜈 𝑡 𝑏 ⋅ 𝑖 𝑙+𝑝+ 𝑚 𝑞 𝑙+𝑝 2 − 𝑚 𝑞 +𝑖𝜀 ×𝜖 𝜈 ∗𝜆 ′ 𝑘 𝜖 𝜇 ∗𝜆 𝑝

From the Feynman diagram to the decay amplitude l + p l l - k 𝑀=−𝑖 𝑚 𝑞 𝜐 −1 ∫ 𝒅 𝟒 𝒍 𝟐𝝅 𝟒 𝑇𝑟 𝑖 𝑙−𝑘+ 𝑚 𝑞 𝑙−𝑘 2 − 𝑚 𝑞 +𝑖𝜀 ⋅𝑖 𝑔 𝑠 𝛾 𝜈 𝑡 𝑎 ⋅ 𝑖 𝑙+ 𝑚 𝑞 𝑙 2 − 𝑚 𝑞 +𝑖𝜀 ⋅𝑖 𝑔 𝑠 𝛾 𝜈 𝑡 𝑏 ⋅ 𝑖 𝑙+𝑝+ 𝑚 𝑞 𝑙+𝑝 2 − 𝑚 𝑞 +𝑖𝜀 ×𝜖 𝜈 ∗𝜆 ′ 𝑘 𝜖 𝜇 ∗𝜆 𝑝

Calculating the decay amplitude The numerator: 𝑀=−𝑖 𝑚 𝑞 𝜐 −1 ∫ 𝑑 4 𝑙 2𝜋 4 𝑇𝑟 𝑖 𝑙−𝑘+ 𝑚 𝑞 𝑙−𝑘 2 − 𝑚 𝑞 +𝑖𝜀 ⋅𝑖 𝑔 𝑠 𝛾 𝜈 𝑡 𝑎 ⋅ 𝑖 𝑙+ 𝑚 𝑞 𝑙 2 − 𝑚 𝑞 +𝑖𝜀 ⋅𝑖 𝑔 𝑠 𝛾 𝜈 𝑡 𝑏 ⋅ 𝑖 𝑙+𝑝+ 𝑚 𝑞 𝑙+𝑝 2 − 𝑚 𝑞 +𝑖𝜀 ×𝜖 𝜈 ∗𝜆 ′ 𝑘 𝜖 𝜇 ∗𝜆 𝑝

Calculating the decay amplitude The numerator: 𝑀=−𝑖 𝑚 𝑞 𝜐 −1 ∫ 𝑑 4 𝑙 2𝜋 4 𝑇𝑟 𝑖 𝑙−𝑘+ 𝑚 𝑞 𝑙−𝑘 2 − 𝑚 𝑞 +𝑖𝜀 ⋅𝑖 𝑔 𝑠 𝛾 𝜈 𝑡 𝑎 ⋅ 𝑖 𝑙+ 𝑚 𝑞 𝑙 2 − 𝑚 𝑞 +𝑖𝜀 ⋅𝑖 𝑔 𝑠 𝛾 𝜈 𝑡 𝑏 ⋅ 𝑖 𝑙+𝑝+ 𝑚 𝑞 𝑙+𝑝 2 − 𝑚 𝑞 +𝑖𝜀 ×𝜖 𝜈 ∗𝜆 ′ 𝑘 𝜖 𝜇 ∗𝜆 𝑝 Contains 3×2×3=18 terms

Calculating the decay amplitude The numerator: 𝑀=−𝑖 𝑚 𝑞 𝜐 −1 ∫ 𝑑 4 𝑙 2𝜋 4 𝑇𝑟 𝑖 𝑙−𝑘+ 𝑚 𝑞 𝑙−𝑘 2 − 𝑚 𝑞 +𝑖𝜀 ⋅𝑖 𝑔 𝑠 𝛾 𝜈 𝑡 𝑎 ⋅ 𝑖 𝑙+ 𝑚 𝑞 𝑙 2 − 𝑚 𝑞 +𝑖𝜀 ⋅𝑖 𝑔 𝑠 𝛾 𝜈 𝑡 𝑏 ⋅ 𝑖 𝑙+𝑝+ 𝑚 𝑞 𝑙+𝑝 2 − 𝑚 𝑞 +𝑖𝜀 ×𝜖 𝜈 ∗𝜆 ′ 𝑘 𝜖 𝜇 ∗𝜆 𝑝 Numerator algebra (trace technology) Tr[𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝛾 ′ 𝑠 ] = 0 𝛾 𝜇 , 𝛾 𝜈 =4 𝑔 𝜇𝜈 𝑇𝑟 𝛾 𝜇 𝛾 𝜈 =2 𝑔 𝜇𝜈 𝑇𝑟 𝛾 𝜇 𝛾 𝜈 𝛾 𝜌 𝛾 𝜎 =4( 𝑔 𝜇𝜈 𝑔 𝜌𝜎 − 𝑔 𝜇𝜌 𝑔 𝜈𝜎 + 𝑔 𝜇𝜎 𝑔 𝜈𝜌 )

Calculating the decay amplitude The denominator: 𝑀=−𝑖 𝑚 𝑞 𝜐 −1 ∫ 𝑑 4 𝑙 2𝜋 4 𝑇𝑟 𝑖 𝑙−𝑘+ 𝑚 𝑞 𝒍−𝒌 𝟐 − 𝒎 𝒒 +𝒊𝜺 ⋅𝑖 𝑔 𝑠 𝛾 𝜈 𝑡 𝑎 ⋅ 𝑖 𝑙+ 𝑚 𝑞 𝒍 𝟐 − 𝒎 𝒒 +𝒊𝜺 ⋅𝑖 𝑔 𝑠 𝛾 𝜈 𝑡 𝑏 ⋅ 𝑖 𝑙+𝑝+ 𝑚 𝑞 𝒍+𝒑 𝟐 − 𝒎 𝒒 +𝒊𝜺 ×𝜖 𝜈 ∗𝜆 ′ 𝑘 𝜖 𝜇 ∗𝜆 𝑝

Calculating the decay amplitude The denominator: 𝑀=−𝑖 𝑚 𝑞 𝜐 −1 ∫ 𝑑 4 𝑙 2𝜋 4 𝑇𝑟 𝑖 𝑙−𝑘+ 𝑚 𝑞 𝒍−𝒌 𝟐 − 𝒎 𝒒 +𝒊𝜺 ⋅𝑖 𝑔 𝑠 𝛾 𝜈 𝑡 𝑎 ⋅ 𝑖 𝑙+ 𝑚 𝑞 𝒍 𝟐 − 𝒎 𝒒 +𝒊𝜺 ⋅𝑖 𝑔 𝑠 𝛾 𝜈 𝑡 𝑏 ⋅ 𝑖 𝑙+𝑝+ 𝑚 𝑞 𝒍+𝒑 𝟐 − 𝒎 𝒒 +𝒊𝜺 ×𝜖 𝜈 ∗𝜆 ′ 𝑘 𝜖 𝜇 ∗𝜆 𝑝 1 𝐴𝐵𝐶 = 1 𝒍−𝒌 𝟐 − 𝒎 𝒒 +𝒊𝜺 𝒍 𝟐 − 𝒎 𝒒 +𝒊𝜺 𝒍+𝒑 𝟐 − 𝒎 𝒒 +𝒊𝜺

Calculating the decay amplitude The denominator: 𝑀=−𝑖 𝑚 𝑞 𝜐 −1 ∫ 𝑑 4 𝑙 2𝜋 4 𝑇𝑟 𝑖 𝑙−𝑘+ 𝑚 𝑞 𝒍−𝒌 𝟐 − 𝒎 𝒒 +𝒊𝜺 ⋅𝑖 𝑔 𝑠 𝛾 𝜈 𝑡 𝑎 ⋅ 𝑖 𝑙+ 𝑚 𝑞 𝒍 𝟐 − 𝒎 𝒒 +𝒊𝜺 ⋅𝑖 𝑔 𝑠 𝛾 𝜈 𝑡 𝑏 ⋅ 𝑖 𝑙+𝑝+ 𝑚 𝑞 𝒍+𝒑 𝟐 − 𝒎 𝒒 +𝒊𝜺 ×𝜖 𝜈 ∗𝜆 ′ 𝑘 𝜖 𝜇 ∗𝜆 𝑝 1 𝐴𝐵𝐶 = 1 𝒍−𝒌 𝟐 − 𝒎 𝒒 +𝒊𝜺 𝒍 𝟐 − 𝒎 𝒒 +𝒊𝜺 𝒍+𝒑 𝟐 − 𝒎 𝒒 +𝒊𝜺 We would like it to be in the form 1 𝐴𝐵𝐶 = 1 𝑙+𝛽 2 −Δ) 3

Feynman Parameterization 0 1 𝑑𝑥 1 𝑥𝐴+ 1−𝑥 𝐵 2 = 1 𝐴𝐵 observe that: 0 1 0 1 0 1 𝑑𝑥𝑑𝑦 𝑑𝑧 2𝛿(𝑥+𝑦+𝑧−1) 𝑥𝐴+𝑦𝐵+𝑧𝐶 3 = 1 𝐴𝐵𝐶 This generalizes to:

Feynman Parameterization 1 𝐴𝐵𝐶 = 1 𝒍−𝒌 𝟐 − 𝒎 𝒒 +𝒊𝜺 𝒍 𝟐 − 𝒎 𝒒 +𝒊𝜺 𝒍+𝒑 𝟐 − 𝒎 𝒒 +𝒊𝜺 1 𝐴𝐵𝐶 = 0 1 𝑑𝑥 0 1 𝑑𝑦 0 1 𝑑𝑧 2 𝛿(𝑥+𝑦+𝑧−1) 𝒍−𝒌 𝟐 − 𝒎 𝒒 +𝒊𝜺 𝑥+ 𝒍 𝟐 − 𝒎 𝒒 +𝒊𝜺 𝑦+ 𝒍+𝒑 𝟐 − 𝒎 𝒒 +𝒊𝜺 𝑧 3 1 𝐴𝐵𝐶 = 0 1 𝑑𝑥 0 1−𝑥 𝑑𝑧 2 [𝒍+ 𝒛𝒑−𝒙𝒌 ] 2 +2𝑥𝑧𝑘𝑝− 𝑚 𝑞 2 +𝑖𝜀 3 ℓ Δ

The loop integral becomes: Feynman Parameterization The loop integral becomes: 𝑥=0 1 𝑧=0 1−𝑧 𝑑𝑥𝑑𝑧 𝒅 𝟒 ℓ 2𝜋 4 ⋅𝑖 𝑔 𝑠 2 ⋅4 𝑚 𝑞 { 2⋅ 𝟒 ℓ 𝝁 ℓ 𝝂 − ℓ 𝟐 𝒈 𝝁𝝂 + 4 𝑧 2 −2𝑧 𝑝 𝜈 𝑝 𝜇 + 4 𝑥 2 −2𝑥 𝑘 𝜈 𝑘 𝜇 ℓ 𝟐 +𝚫 3 + 2⋅ 1−4𝑥𝑧 𝑝 𝜈 𝑘 𝜇 + 2𝑥+2𝑧−1−4𝑧𝑥 𝑘 𝜈 𝑝 𝜇 + 𝑚 𝑞 2 − 1 2 𝑚 ℎ 2 +𝑥𝑧⋅ 𝑚 ℎ 2 𝑔 𝜇𝜈 ℓ 𝟐 +𝚫 3 }

The loop integral becomes: Feynman Parameterization The loop integral becomes: 𝑥=0 1 𝑧=0 1−𝑧 𝑑𝑥𝑑𝑧 𝒅 𝟒 ℓ 2𝜋 4 ⋅𝑖 𝑔 𝑠 2 ⋅4 𝑚 𝑞 { 2⋅ 𝟒 ℓ 𝝁 ℓ 𝝂 − ℓ 𝟐 𝒈 𝝁𝝂 + 4 𝑧 2 −2𝑧 𝑝 𝜈 𝑝 𝜇 + 4 𝑥 2 −2𝑥 𝑘 𝜈 𝑘 𝜇 ℓ 𝟐 +𝚫 3 + 2⋅ 1−4𝑥𝑧 𝑝 𝜈 𝑘 𝜇 + 2𝑥+2𝑧−1−4𝑧𝑥 𝑘 𝜈 𝑝 𝜇 + 𝑚 𝑞 2 − 1 2 𝑚 ℎ 2 +𝑥𝑧⋅ 𝑚 ℎ 2 𝑔 𝜇𝜈 ℓ 𝟐 +𝜟 3 }

The loop integral becomes: Dimensional Regularization The loop integral becomes: 𝑑 4 ℓ 2𝜋 4 ⋅ 𝟒 ℓ 𝝁 ℓ 𝝂 − ℓ 𝟐 𝒈 𝝁𝝂 ℓ 2 +𝛥 3 → 𝑑 𝑑 ℓ 2𝜋 𝑑 ⋅ 𝟒 𝒅 −1 ℓ 𝟐 𝒈 𝝁𝝂 ℓ 2 +𝛥 3 𝑑→4

𝑑 𝑑 ℓ: 𝑑−𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝐸𝑢𝑘𝑙𝑒𝑑𝑒𝑎𝑛 𝑠𝑝𝑎𝑐𝑒 Dimensional Regularization The loop integral becomes: 𝑑 4 ℓ 2𝜋 4 ⋅ 𝟒 ℓ 𝝁 ℓ 𝝂 − ℓ 𝟐 𝒈 𝝁𝝂 ℓ 2 +𝛥 3 → 𝑑 𝑑 ℓ 2𝜋 𝑑 ⋅ 𝟒 𝒅 −1 ℓ 𝟐 𝒈 𝝁𝝂 ℓ 2 +𝛥 3 𝑑→4 Wick Rotation ℓ 𝐸 0 →𝑖 ℓ 0 : 𝑑 𝑑 ℓ: 𝑑−𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝐸𝑢𝑘𝑙𝑒𝑑𝑒𝑎𝑛 𝑠𝑝𝑎𝑐𝑒

𝑑 𝑑 ℓ: 𝑑−𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝐸𝑢𝑘𝑙𝑒𝑑𝑒𝑎𝑛 𝑠𝑝𝑎𝑐𝑒 Dimensional Regularization The loop integral becomes: 𝑑 4 ℓ 2𝜋 4 ⋅ 𝟒 ℓ 𝝁 ℓ 𝝂 − ℓ 𝟐 𝒈 𝝁𝝂 ℓ 2 +𝛥 3 → 𝑑 𝑑 ℓ 2𝜋 𝑑 ⋅ 𝟒 𝒅 −1 ℓ 𝟐 𝒈 𝝁𝝂 ℓ 2 +𝛥 3 𝑑→4 Wick Rotation ℓ 𝐸 0 →𝑖 ℓ 0 : 𝑑 𝑑 ℓ: 𝑑−𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝐸𝑢𝑘𝑙𝑒𝑑𝑒𝑎𝑛 𝑠𝑝𝑎𝑐𝑒 →𝑖 4 d −1 g μν d d ℓ E 2𝜋 𝑑 ⋅ ℓ 𝑬 𝟐 ℓ 𝐸 2 −𝛥 3 𝑑→4 =𝑖 4 d −1 g μν 𝑑 Ω 𝑑 d ℓ E 2𝜋 𝑑 ⋅ ℓ E 𝒅−𝟏 ℓ 𝑬 𝟐 ℓ 𝐸 2 −𝛥 3 𝑑→4

𝑑 𝑑 ℓ: 𝑑−𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝐸𝑢𝑘𝑙𝑒𝑑𝑒𝑎𝑛 𝑠𝑝𝑎𝑐𝑒 Dimensional Regularization The loop integral becomes: 𝑑 4 ℓ 2𝜋 4 ⋅ 𝟒 ℓ 𝝁 ℓ 𝝂 − ℓ 𝟐 𝒈 𝝁𝝂 ℓ 2 +𝛥 3 → 𝑑 𝑑 ℓ 2𝜋 𝑑 ⋅ 𝟒 𝒅 −1 ℓ 𝟐 𝒈 𝝁𝝂 ℓ 2 +𝛥 3 𝑑→4 Wick Rotation ℓ 𝐸 0 →𝑖 ℓ 0 : 𝑑 𝑑 ℓ: 𝑑−𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝐸𝑢𝑘𝑙𝑒𝑑𝑒𝑎𝑛 𝑠𝑝𝑎𝑐𝑒 →𝑖 4 d −1 g μν d d ℓ E 2𝜋 𝑑 ⋅ ℓ 𝑬 𝟐 ℓ 𝐸 2 −𝛥 3 𝑑→4 =𝑖 4 d −1 g μν 𝑑 Ω 𝑑 d ℓ E 2𝜋 𝑑 ⋅ ℓ E 𝒅−𝟏 ℓ 𝑬 𝟐 ℓ 𝐸 2 −𝛥 3 𝑑→4 𝑑 4 ℓ 2𝜋 4 ⋅ 𝟒 ℓ 𝝁 ℓ 𝝂 − ℓ 𝟐 𝒈 𝝁𝝂 ℓ 2 +𝛥 3 = 𝑖 16 𝜋 2

The loop integral : Calculation of M 𝑥=0 1 𝑧=0 1−𝑧 𝑑𝑥𝑑𝑧 𝒅 𝟒 ℓ 2𝜋 4 ⋅𝑖 𝑔 𝑠 2 ⋅4 𝑚 𝑞 { 2⋅ 𝟒 ℓ 𝝁 ℓ 𝝂 − ℓ 𝟐 𝒈 𝝁𝝂 + 4 𝑧 2 −2𝑧 𝑝 𝜈 𝑝 𝜇 + 4 𝑥 2 −2𝑥 𝑘 𝜈 𝑘 𝜇 ℓ 𝟐 +𝚫 3 + 2⋅ 1−4𝑥𝑧 𝑝 𝜈 𝑘 𝜇 + 2𝑥+2𝑧−1−4𝑧𝑥 𝑘 𝜈 𝑝 𝜇 + 𝑚 𝑞 2 − 1 2 𝑚 ℎ 2 +𝑥𝑧⋅ 𝑚 ℎ 2 𝑔 𝜇𝜈 ℓ 𝟐 +𝚫 3 }

The loop integral : Is part of M: Calculation of M 𝑥=0 1 𝑧=0 1−𝑧 𝑑𝑥𝑑𝑧 𝒅 𝟒 ℓ 2𝜋 4 ⋅𝑖 𝑔 𝑠 2 ⋅4 𝑚 𝑞 { 2⋅ 𝟒 ℓ 𝝁 ℓ 𝝂 − ℓ 𝟐 𝒈 𝝁𝝂 + 4 𝑧 2 −2𝑧 𝑝 𝜈 𝑝 𝜇 + 4 𝑥 2 −2𝑥 𝑘 𝜈 𝑘 𝜇 ℓ 𝟐 +𝚫 3 + 2⋅ 1−4𝑥𝑧 𝑝 𝜈 𝑘 𝜇 + 2𝑥+2𝑧−1−4𝑧𝑥 𝑘 𝜈 𝑝 𝜇 + 𝑚 𝑞 2 − 1 2 𝑚 ℎ 2 +𝑥𝑧⋅ 𝑚 ℎ 2 𝑔 𝜇𝜈 ℓ 𝟐 +𝚫 3 } Is part of M: 𝑀=−𝑖 𝑚 𝑞 𝜐 −1 𝑥=0 1 𝑧=0 1−𝑧 𝑑𝑥𝑑𝑧 𝒅 𝟒 ℓ 2𝜋 4 ⋅𝑖 𝑔 𝑠 2 ⋅4 𝑚 𝑞 2⋅ 𝟒 ℓ 𝝁 ℓ 𝝂 − ℓ 𝟐 𝒈 𝝁𝝂 + 4 𝑧 2 −2𝑧 𝑝 𝜈 𝑝 𝜇 + 4 𝑥 2 −2𝑥 𝑘 𝜈 𝑘 𝜇 ℓ 𝟐 +𝚫 3 + 2⋅ 1−4𝑥𝑧 𝑝 𝜈 𝑘 𝜇 + 2𝑥+2𝑧−1−4𝑧𝑥 𝑘 𝜈 𝑝 𝜇 + 𝑚 𝑞 2 − 1 2 𝑚 ℎ 2 +𝑥𝑧⋅ 𝑚 ℎ 2 𝑔 𝜇𝜈 ℓ 𝟐 +𝚫 3 ×𝜖 𝜈 ∗𝜆 ′ 𝑘 𝜖 𝜇 ∗𝜆 𝑝

The loop integral : Is part of M: Calculation of M 𝑥=0 1 𝑧=0 1−𝑧 𝑑𝑥𝑑𝑧 𝒅 𝟒 ℓ 2𝜋 4 ⋅𝑖 𝑔 𝑠 2 ⋅4 𝑚 𝑞 { 2⋅ 𝟒 ℓ 𝝁 ℓ 𝝂 − ℓ 𝟐 𝒈 𝝁𝝂 + 4 𝑧 2 −2𝑧 𝑝 𝜈 𝑝 𝜇 + 4 𝑥 2 −2𝑥 𝑘 𝜈 𝑘 𝜇 ℓ 𝟐 +𝚫 3 + 2⋅ 1−4𝑥𝑧 𝑝 𝜈 𝑘 𝜇 + 2𝑥+2𝑧−1−4𝑧𝑥 𝑘 𝜈 𝑝 𝜇 + 𝑚 𝑞 2 − 1 2 𝑚 ℎ 2 +𝑥𝑧⋅ 𝑚 ℎ 2 𝑔 𝜇𝜈 ℓ 𝟐 +𝚫 3 } Is part of M: 𝑀=−𝑖 𝑚 𝑞 𝜐 −1 𝑥=0 1 𝑧=0 1−𝑧 𝑑𝑥𝑑𝑧 𝒅 𝟒 ℓ 2𝜋 4 ⋅𝑖 𝑔 𝑠 2 ⋅4 𝑚 𝑞 2⋅ 𝟒 ℓ 𝝁 ℓ 𝝂 − ℓ 𝟐 𝒈 𝝁𝝂 + 4 𝑧 2 −2𝑧 𝑝 𝜈 𝑝 𝜇 + 4 𝑥 2 −2𝑥 𝑘 𝜈 𝑘 𝜇 ℓ 𝟐 +𝚫 3 + 2⋅ 1−4𝑥𝑧 𝑝 𝜈 𝑘 𝜇 + 2𝑥+2𝑧−1−4𝑧𝑥 𝑘 𝜈 𝑝 𝜇 + 𝑚 𝑞 2 − 1 2 𝑚 ℎ 2 +𝑥𝑧⋅ 𝑚 ℎ 2 𝑔 𝜇𝜈 ℓ 𝟐 +𝚫 3 ×𝜖 𝜈 ∗𝜆 ′ 𝑘 𝜖 𝜇 ∗𝜆 𝑝

The loop integral : Is part of M: Calculation of M 𝑥=0 1 𝑧=0 1−𝑧 𝑑𝑥𝑑𝑧 𝒅 𝟒 ℓ 2𝜋 4 ⋅𝑖 𝑔 𝑠 2 ⋅4 𝑚 𝑞 { 2⋅ 𝟒 ℓ 𝝁 ℓ 𝝂 − ℓ 𝟐 𝒈 𝝁𝝂 + 4 𝑧 2 −2𝑧 𝑝 𝜈 𝑝 𝜇 + 4 𝑥 2 −2𝑥 𝑘 𝜈 𝑘 𝜇 ℓ 𝟐 +𝚫 3 + 2⋅ 1−4𝑥𝑧 𝑝 𝜈 𝑘 𝜇 + 2𝑥+2𝑧−1−4𝑧𝑥 𝑘 𝜈 𝑝 𝜇 + 𝑚 𝑞 2 − 1 2 𝑚 ℎ 2 +𝑥𝑧⋅ 𝑚 ℎ 2 𝑔 𝜇𝜈 ℓ 𝟐 +𝚫 3 } Is part of M: 𝑀=−𝑖 𝑚 𝑞 𝜐 −1 𝑥=0 1 𝑧=0 1−𝑧 𝑑𝑥𝑑𝑧 𝒅 𝟒 ℓ 2𝜋 4 ⋅𝑖 𝑔 𝑠 2 ⋅4 𝑚 𝑞 2⋅ 𝟒 ℓ 𝝁 ℓ 𝝂 − ℓ 𝟐 𝒈 𝝁𝝂 + 4 𝑧 2 −2𝑧 𝑝 𝜈 𝑝 𝜇 + 4 𝑥 2 −2𝑥 𝑘 𝜈 𝑘 𝜇 ℓ 𝟐 +𝚫 3 + 2⋅ 1−4𝑥𝑧 𝑝 𝜈 𝑘 𝜇 + 2𝑥+2𝑧−1−4𝑧𝑥 𝑘 𝜈 𝑝 𝜇 + 𝑚 𝑞 2 − 1 2 𝑚 ℎ 2 +𝑥𝑧⋅ 𝑚 ℎ 2 𝑔 𝜇𝜈 ℓ 𝟐 +𝚫 3 ×𝜖 𝜈 ∗𝜆 ′ 𝑘 𝜖 𝜇 ∗𝜆 𝑝

The loop integral : Is part of M: Calculation of M Many terms vanish! 𝑥=0 1 𝑧=0 1−𝑧 𝑑𝑥𝑑𝑧 𝒅 𝟒 ℓ 2𝜋 4 ⋅𝑖 𝑔 𝑠 2 ⋅4 𝑚 𝑞 { 2⋅ 𝟒 ℓ 𝝁 ℓ 𝝂 − ℓ 𝟐 𝒈 𝝁𝝂 + 4 𝑧 2 −2𝑧 𝑝 𝜈 𝑝 𝜇 + 4 𝑥 2 −2𝑥 𝑘 𝜈 𝑘 𝜇 ℓ 𝟐 +𝚫 3 + 2⋅ 1−4𝑥𝑧 𝑝 𝜈 𝑘 𝜇 + 2𝑥+2𝑧−1−4𝑧𝑥 𝑘 𝜈 𝑝 𝜇 + 𝑚 𝑞 2 − 1 2 𝑚 ℎ 2 +𝑥𝑧⋅ 𝑚 ℎ 2 𝑔 𝜇𝜈 ℓ 𝟐 +𝚫 3 } Is part of M: 𝑀=−𝑖 𝑚 𝑞 𝜐 −1 𝑥=0 1 𝑧=0 1−𝑧 𝑑𝑥𝑑𝑧 𝒅 𝟒 ℓ 2𝜋 4 ⋅𝑖 𝑔 𝑠 2 ⋅4 𝑚 𝑞 2⋅ 𝟒 ℓ 𝝁 ℓ 𝝂 − ℓ 𝟐 𝒈 𝝁𝝂 + 4 𝑧 2 −2𝑧 𝑝 𝜈 𝑝 𝜇 + 4 𝑥 2 −2𝑥 𝑘 𝜈 𝑘 𝜇 ℓ 𝟐 +𝚫 3 + 2⋅ 1−4𝑥𝑧 𝑝 𝜈 𝑘 𝜇 + 2𝑥+2𝑧−1−4𝑧𝑥 𝑘 𝜈 𝑝 𝜇 + 𝑚 𝑞 2 − 1 2 𝑚 ℎ 2 +𝑥𝑧⋅ 𝑚 ℎ 2 𝑔 𝜇𝜈 ℓ 𝟐 +𝚫 3 ×𝜖 𝜈 ∗𝜆 ′ 𝑘 𝜖 𝜇 ∗𝜆 𝑝 𝑝 𝜇 𝜖 𝜇 𝜆 =0 and 𝑘 𝜇 𝜖 𝜇 𝜆 ′ =0 Many terms vanish!

The loop integral : Is part of M: Calculation of M Many terms vanish! 𝑥=0 1 𝑧=0 1−𝑧 𝑑𝑥𝑑𝑧 𝒅 𝟒 ℓ 2𝜋 4 ⋅𝑖 𝑔 𝑠 2 ⋅4 𝑚 𝑞 { 2⋅ 𝟒 ℓ 𝝁 ℓ 𝝂 − ℓ 𝟐 𝒈 𝝁𝝂 + 4 𝑧 2 −2𝑧 𝑝 𝜈 𝑝 𝜇 + 4 𝑥 2 −2𝑥 𝑘 𝜈 𝑘 𝜇 ℓ 𝟐 +𝚫 3 + 2⋅ 1−4𝑥𝑧 𝑝 𝜈 𝑘 𝜇 + 2𝑥+2𝑧−1−4𝑧𝑥 𝑘 𝜈 𝑝 𝜇 + 𝑚 𝑞 2 − 1 2 𝑚 ℎ 2 +𝑥𝑧⋅ 𝑚 ℎ 2 𝑔 𝜇𝜈 ℓ 𝟐 +𝚫 3 } Is part of M: 𝑀=−𝑖 𝑚 𝑞 𝜐 −1 𝑥=0 1 𝑧=0 1−𝑧 𝑑𝑥𝑑𝑧 𝒅 𝟒 ℓ 2𝜋 4 ⋅𝑖 𝑔 𝑠 2 ⋅4 𝑚 𝑞 2⋅ 𝟒 ℓ 𝝁 ℓ 𝝂 − ℓ 𝟐 𝒈 𝝁𝝂 + 𝟒 𝒛 𝟐 −𝟐𝒛 𝒑 𝝂 𝒑 𝝁 + 4 𝑥 2 −2𝑥 𝑘 𝜈 𝑘 𝜇 ℓ 𝟐 +𝚫 3 + 2⋅ 1−4𝑥𝑧 𝑝 𝜈 𝑘 𝜇 + 2𝑥+2𝑧−1−4𝑧𝑥 𝑘 𝜈 𝑝 𝜇 + 𝑚 𝑞 2 − 1 2 𝑚 ℎ 2 +𝑥𝑧⋅ 𝑚 ℎ 2 𝑔 𝜇𝜈 ℓ 𝟐 +𝚫 3 ×𝜖 𝜈 ∗𝜆 ′ 𝑘 𝝐 𝝁 ∗𝝀 𝒑 Many terms vanish!

The loop integral : Is part of M: Calculation of M Many terms vanish! 𝑥=0 1 𝑧=0 1−𝑧 𝑑𝑥𝑑𝑧 𝒅 𝟒 ℓ 2𝜋 4 ⋅𝑖 𝑔 𝑠 2 ⋅4 𝑚 𝑞 { 2⋅ 𝟒 ℓ 𝝁 ℓ 𝝂 − ℓ 𝟐 𝒈 𝝁𝝂 + 4 𝑧 2 −2𝑧 𝑝 𝜈 𝑝 𝜇 + 4 𝑥 2 −2𝑥 𝑘 𝜈 𝑘 𝜇 ℓ 𝟐 +𝚫 3 + 2⋅ 1−4𝑥𝑧 𝑝 𝜈 𝑘 𝜇 + 2𝑥+2𝑧−1−4𝑧𝑥 𝑘 𝜈 𝑝 𝜇 + 𝑚 𝑞 2 − 1 2 𝑚 ℎ 2 +𝑥𝑧⋅ 𝑚 ℎ 2 𝑔 𝜇𝜈 ℓ 𝟐 +𝚫 3 } Is part of M: 𝑀=−𝑖 𝑚 𝑞 𝜐 −1 𝑥=0 1 𝑧=0 1−𝑧 𝑑𝑥𝑑𝑧 𝒅 𝟒 ℓ 2𝜋 4 ⋅𝑖 𝑔 𝑠 2 ⋅4 𝑚 𝑞 2⋅ 𝟒 ℓ 𝝁 ℓ 𝝂 − ℓ 𝟐 𝒈 𝝁𝝂 + 𝟒 𝒛 𝟐 −𝟐𝒛 𝒑 𝝂 𝒑 𝝁 + 4 𝑥 2 −2𝑥 𝑘 𝜈 𝑘 𝜇 ℓ 𝟐 +𝚫 3 + 2⋅ 1−4𝑥𝑧 𝑝 𝜈 𝑘 𝜇 + 2𝑥+2𝑧−1−4𝑧𝑥 𝑘 𝜈 𝑝 𝜇 + 𝑚 𝑞 2 − 1 2 𝑚 ℎ 2 +𝑥𝑧⋅ 𝑚 ℎ 2 𝑔 𝜇𝜈 ℓ 𝟐 +𝚫 3 ×𝜖 𝜈 ∗𝜆 ′ 𝑘 𝝐 𝝁 ∗𝝀 𝒑 Many terms vanish!

Final expression for M 𝑀 𝑞 𝑎𝑏𝜆 𝜆 ′ =−𝑒⋅ 𝑔 𝑠 2 8 𝜋 2 𝑚 𝑊 𝑠𝑖𝑛 𝜃 𝑊 ⋅ 𝛿 𝑎𝑏 ⋅ 1 2 𝑚 ℎ 2 ⋅ 𝑔 𝜇𝜈 − 𝑝 𝜈 𝑘 𝜇 ⋅𝐼 𝑚 ℎ 2 𝑚 𝑞 2 ⋅ 𝜖 𝜈 ∗𝜆 ′ 𝑘 𝜖 𝜇 ∗𝜆 𝑝

Final expression for M 𝑀 𝑞 𝑎𝑏𝝀 𝝀 ′ =−𝑒⋅ 𝑔 𝑠 2 8 𝜋 2 𝑚 𝑊 𝑠𝑖𝑛 𝜃 𝑊 ⋅ 𝛿 𝑎𝑏 ⋅ 1 2 𝑚 ℎ 2 ⋅ 𝑔 𝜇𝜈 − 𝑝 𝜈 𝑘 𝜇 ⋅𝐼 𝑚 ℎ 2 𝑚 𝑞 2 ⋅ 𝜖 𝜈 ∗ 𝝀 ′ 𝑘 𝜖 𝜇 ∗𝝀 𝑝 For a specific polarization 𝝀 ′ of the k gluon and 𝝀 of the p gluon

Final expression for M 𝑀 𝑞 𝒂𝒃𝜆 𝜆 ′ =−𝑒⋅ 𝑔 𝑠 2 8 𝜋 2 𝑚 𝑊 𝑠𝑖𝑛 𝜃 𝑊 ⋅ 𝛿 𝒂𝒃 ⋅ 1 2 𝑚 ℎ 2 ⋅ 𝑔 𝜇𝜈 − 𝑝 𝜈 𝑘 𝜇 ⋅𝐼 𝑚 ℎ 2 𝑚 𝑞 2 ⋅ 𝜖 𝜈 ∗ 𝝀 ′ 𝑘 𝜖 𝜇 ∗𝝀 𝑝 For a specific polarization 𝜆 ′ of the k gluon and 𝜆 of the p gluon For specific gluon colors a and b

Final expression for M 𝑀 𝒒 𝑎𝑏𝜆 𝜆 ′ =−𝑒⋅ 𝑔 𝑠 2 8 𝜋 2 𝑚 𝑊 𝑠𝑖𝑛 𝜃 𝑊 ⋅ 𝛿 𝑎𝑏 ⋅ 1 2 𝑚 ℎ 2 ⋅ 𝑔 𝜇𝜈 − 𝑝 𝜈 𝑘 𝜇 ⋅𝐼 𝑚 ℎ 2 𝑚 𝑞 2 ⋅ 𝜖 𝜈 ∗ 𝝀 ′ 𝑘 𝜖 𝜇 ∗𝝀 𝑝 For a specific polarization 𝜆 ′ of the k gluon and 𝜆 of the p gluon For specific gluon colors a and b For a specific quark q

For the decay rate Γ Remembering the decay rate: 𝑑Γ= 1 2 𝑚 ℎ 𝑑 3 𝑝 2𝜋 3 1 2 𝐸 𝑝 ⋅ 𝑑 3 𝑘 2𝜋 3 1 2 𝐸 𝑘 𝑴 𝒎 𝒉 →𝒑,𝒌 𝟐 2𝜋 4 𝛿 4 ( 𝑚 ℎ −𝑝−𝑘) We need to sum over all different polarizations , over all different colors and over different quark species! 𝑀 𝒒 𝑎𝑏𝜆 𝜆 ′ =−𝑒⋅ 𝑔 𝑠 2 4 𝜋 2 𝑚 𝑊 𝑠𝑖𝑛 𝜃 𝑊 ⋅ 𝛿 𝑎𝑏 ⋅ 1 2 𝑚 ℎ 2 ⋅ 𝑔 𝜇𝜈 − 𝑝 𝜈 𝑘 𝜇 ⋅𝐼 𝑚 ℎ 2 𝑚 𝑞 2 ⋅ 𝜖 𝜈 ∗ 𝝀 ′ 𝑘 𝜖 𝜇 ∗𝝀 𝑝

For the decay rate Γ 𝑀 𝒒 𝑎𝑏𝜆 𝜆 ′ =−𝑒⋅ 𝑔 𝑠 2 4 𝜋 2 𝑚 𝑊 𝑠𝑖𝑛 𝜃 𝑊 ⋅ 𝛿 𝑎𝑏 ⋅ 1 2 𝑚 ℎ 2 ⋅ 𝑔 𝜇𝜈 − 𝑝 𝜈 𝑘 𝜇 ⋅𝐼 𝑚 ℎ 2 𝑚 𝑞 2 ⋅ 𝜖 𝜈 ∗ 𝝀 ′ 𝑘 𝜖 𝜇 ∗𝝀 𝑝

For the decay rate Γ 𝑀 𝒒 𝑎𝑏𝜆 𝜆 ′ =−𝑒⋅ 𝑔 𝑠 2 4 𝜋 2 𝑚 𝑊 𝑠𝑖𝑛 𝜃 𝑊 ⋅ 𝛿 𝑎𝑏 ⋅ 1 2 𝑚 ℎ 2 ⋅ 𝑔 𝜇𝜈 − 𝑝 𝜈 𝑘 𝜇 ⋅𝐼 𝑚 ℎ 2 𝑚 𝑞 2 ⋅ 𝜖 𝜈 ∗ 𝝀 ′ 𝑘 𝜖 𝜇 ∗𝝀 𝑝 Useful identity: 𝝀 𝝐 𝝂 ∗𝝀 𝒑 𝝐 𝝁 𝝀 𝒑 = 𝒈 𝝁𝝂

Useful identity: 𝝀 𝝐 𝝂 ∗𝝀 𝒑 𝝐 𝝁 𝝀 𝒑 = 𝒈 𝝁𝝂 For the decay rate Γ 𝑀 𝒒 𝑎𝑏𝜆 𝜆 ′ =−𝑒⋅ 𝑔 𝑠 2 4 𝜋 2 𝑚 𝑊 𝑠𝑖𝑛 𝜃 𝑊 ⋅ 𝛿 𝑎𝑏 ⋅ 1 2 𝑚 ℎ 2 ⋅ 𝑔 𝜇𝜈 − 𝑝 𝜈 𝑘 𝜇 ⋅𝐼 𝑚 ℎ 2 𝑚 𝑞 2 ⋅ 𝜖 𝜈 ∗ 𝝀 ′ 𝑘 𝜖 𝜇 ∗𝝀 𝑝 Useful identity: 𝝀 𝝐 𝝂 ∗𝝀 𝒑 𝝐 𝝁 𝝀 𝒑 = 𝒈 𝝁𝝂 𝑎,𝑏 𝛿 𝑎𝑏 2 =8

Useful identity: 𝝀 𝝐 𝝂 ∗𝝀 𝒑 𝝐 𝝁 𝝀 𝒑 = 𝒈 𝝁𝝂 For the decay rate Γ 𝑀 𝒒 𝑎𝑏𝜆 𝜆 ′ =−𝑒⋅ 𝑔 𝑠 2 4 𝜋 2 𝑚 𝑊 𝑠𝑖𝑛 𝜃 𝑊 ⋅ 𝛿 𝑎𝑏 ⋅ 1 2 𝑚 ℎ 2 ⋅ 𝑔 𝜇𝜈 − 𝑝 𝜈 𝑘 𝜇 ⋅𝐼 𝑚 ℎ 2 𝑚 𝑞 2 ⋅ 𝜖 𝜈 ∗ 𝝀 ′ 𝑘 𝜖 𝜇 ∗𝝀 𝑝 Useful identity: 𝝀 𝝐 𝝂 ∗𝝀 𝒑 𝝐 𝝁 𝝀 𝒑 = 𝒈 𝝁𝝂 𝑎,𝑏 𝛿 𝑎𝑏 2 =8 𝑀 2 = 𝑒 2 ⋅ 𝑔 𝑠 4 ⋅ 𝑚 ℎ 4 16 𝜋 4 𝑚 𝑊 2 sin 2 𝜃 𝑊 ⋅ 𝑞 𝐼 𝑚 ℎ 2 𝑚 𝑞 2 2

For the decay rate Γ Γ= 𝑀 2 16 𝑚 ℎ 𝜋 Γ= 𝑀 2 16 𝑚 ℎ 𝜋 Γ= 𝛼⋅ 𝛼 𝑠 2 ⋅ 𝑚 ℎ 3 4 𝜋 2 𝑚 𝑊 2 sin 2 𝜃 𝑊 𝑞 𝐼 𝑚 ℎ 2 𝑚 𝑞 2 2

For the decay rate Γ Γ= 𝑀 2 16 𝑚 ℎ 𝜋 Γ= 𝑀 2 16 𝑚 ℎ 𝜋 Γ= 𝛼⋅ 𝛼 𝑠 2 ⋅ 𝑚 ℎ 3 4 𝜋 2 𝑚 𝑊 2 sin 2 𝜃 𝑊 𝑞 𝐼 𝑚 ℎ 2 𝑚 𝑞 2 2 The form factor 𝐼 𝑚 ℎ 2 𝑚 𝑞 2 = 𝑥=0 1 𝑧=0 1−𝑧 𝑑𝑥𝑑𝑧 1−4𝑥𝑧 1−xz 𝑚 ℎ 2 𝑚 𝑞 2

For the decay rate Γ The form factor 𝐼 𝑚 ℎ 2 𝑚 𝑞 2 = 𝑥=0 1 𝑧=0 1−𝑧 𝑑𝑥𝑑𝑧 1−4𝑥𝑧 1−xz 𝑚 ℎ 2 𝑚 𝑞 2