* 07/16/96 Constraints on Titan’s Hign Haze from Cassini UVIS/ISS and Huygens DISR Observations *

Slides:



Advertisements
Similar presentations
WP4.1 optical properties of other aerosol types. What do you want? Refractive indices, size distribution (log- normal mode parameters) etc OR Pre-calculated.
Advertisements

Eyk Bösche et al. BBC2 Workshop, Oktober 2004: Eyk Bösche et al. BBC2 Workshop, Oktober 2004: Simulation of skylight polarization with the DAK model and.
A Dictionary of Aerosol Remote Sensing Terms Richard Kleidman SSAI/NASA Goddard Lorraine Remer UMBC / JCET Short.
Titan’s Photochemical Model: Oxygen Species and Comparison with Triton and Pluto Vladimir Krasnopolsky Initial data: N 2 and CH 4 densities near the surface.
JERAL ESTUPINAN National Weather Service, Miami, Florida DAN GREGORIA National Weather Service, Miami, Florida ROBERTO ARIAS University of Puerto Rico.
Revised tholin profile for the atmosphere of Titan Mao-Chang Liang 1, J. A. Kammer, X. Zhang 3, D. Shemansky 4, Y. L. Yung 2 1 Research Center for Environmental.
1 Centrum Badań Kosmicznych PAN, ul. Bartycka 18A, Warsaw, Poland Vertical temperature profiles in the Venus.
Constraining aerosol sources using MODIS backscattered radiances Easan Drury - G2
Atmospheric scatterers
ABSORPTION BANDS The many absorption bands at 2.3  m ( cm -1 ) and the one band near 1.6  m (6000 cm -1 ) will be considered (Figure 1). Other.
BASIC RADIATIVE TRANSFER. RADIATION & BLACKBODIES Objects that absorb 100% of incoming radiation are called blackbodies For blackbodies, emission ( 
SATURN’S MYSTERIOUS MOON TITAN
Page 1 1 of 20, EGU General Assembly, Apr 21, 2009 Polarization as a Tool for Remote Sensing of Planetary Atmospheres Vijay Natraj (Caltech) EGU General.
AGU Fall MeetingDecember 4, 2005 Vijay Natraj (California Institute of Technology) Hartmut Bösch (Jet Propulsion Laboratory) Yuk Yung (California Institute.
Page 1 1 of 20, EGU General Assembly, Apr 21, 2009 Vijay Natraj (Caltech), Hartmut Bösch (University of Leicester), Rob Spurr (RT Solutions), Yuk Yung.
Light Scattering Rayleigh Scattering & Mie Scattering.
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
Pat Arnott, ATMS 749 Atmospheric Radiation Transfer CH4: Reflection and Refraction in a Homogenous Medium.
EARLINET and Satellites: Partners for Aerosol Observations Matthias Wiegner Universität München Meteorologisches Institut (Satellites: spaceborne passive.
Attenuation by absorption and scattering
Wenbo Sun, Bruce Wielicki, David Young, and Constantine Lukashin 1.Introduction 2.Objective 3.Effect of anisotropic air molecules on radiation polarization.
GSFC. Glaciation Level and Vertical Profile of Droplet Size Associated with Cloud-Aerosol Interactions (D. Rosenfeld) Clean Polluted.
Airglow on Titan During Eclipse R. A. West 1, J. M. Ajello 1, M. H. Stevens 2, D. F. Strobel 3, G. R. Gladstone 4, J.S. Evans 5, E.T. Bradley 6 1 Jet Propulsion.
FIG. 5.1 Multiple scattering is viewed as a random walk of the photon in diffusing wave spectroscopy (DWS)
1 The Organic Aerosols of Titan’s Atmosphere Christophe Sotin, Patricia M. Beauchamp and Wayne Zimmerman Jet Propulsion Laboratory, California Institute.
Optical properties Satellite observation ? T,H 2 O… From dust microphysical properties to dust hyperspectral infrared remote sensing Clémence Pierangelo.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
1 PHY Lecture 5 Interaction of solar radiation and the atmosphere.
1 CIMSS/SSEC Effort on the Fast IR Cloudy Forward Model Development A Fast Parameterized Single Layer Infrared Cloudy Forward Model Status and Features.
Yuk Yung (Caltech), M. C. Liang (Academia Sinica), X. Zhang (Caltech),
Aerosol distribution and physical properties in the Titan atmosphere D. E. Shemansky 1, X. Zhang 2, M-C. Liang 3, and Y. L. Yung 2 1 SET/PSSD, California,
SATELLITE REMOTE SENSING OF TERRESTRIAL CLOUDS Alexander A. Kokhanovsky Institute of Remote Sensing, Bremen University P. O. Box Bremen, Germany.
Jovian Stratospheric Circulation: Insights from Cassini Observations X. Zhang (1), R. Cosentino (2), R. Morales-Juberias (2), R. A. West (3), S. Coffing.
Stratospheric Aerosol Size Distribution Retrievals Using SAGE III Mark Hervig GATS Inc. Terry Deshler University of Wyoming.
Nitrogen Chemistry in Titan’s Upper Atmosphere J. A. Kammer †, D. E. Shemansky ‡, X. Zhang †, and Y. L. Yung † † California Institute of Technology, Pasadena,
(A) Future of Radiation Parameterizations in CAM Bill Collins National Center for Atmospheric Research
Micro-structural size properties of Saturn’s rings determined from ultraviolet measurements made by the Cassini Ultraviolet Imaging Spectrograph Todd Bradley.
Cassini Imaging Observations of the Jovian Ring H. B. Throop, C. C. Porco, R. A. West, J. A. Burns M. R. Showalter, P. D. Nicholson See also Throop et.
Date of download: 6/1/2016 Copyright © 2016 SPIE. All rights reserved. Spatial (angular) resolution versus field angle for design with toroidal grating.
Fifth Workshop on Titan Chemistry April 2011, Kauai, Hawaii Organic Synthesis in the Atmosphere of Titan: Modeling and Recent Observations Yuk Yung.
Titan Glows in the Dark – West et al. and Ajello et al., 2012 R. A.. West, J. M. Ajello, M. H. Stevens, D. F. Strobel, G. R. Gladstone, J. S. Evans, and.
SOIR Data Workshop SOIR science status A.C. Vandaele, A. Mahieux, S. Robert, R. Drummond, V. Wilquet, E. Neefs, B. Ristic, S. Berkenbosch, R. Clairquin.
R. A. WEST, J. M. AJELLO, M. H. STEVENS, D. F. STROBEL, G. R. GLADSTONE, J.S. EVANS, T. BRADLEY, TITAN AIRGLOW DURING ECLIPSE 19 June 2012R. West 1.
Titan Airglow Spectra From 2004 and 2008 and Laboratory Results for UVIS, ISS and VIMS (800-11,000 Å) JOSEPH AJELLO JPL JACQUES GUSTIN MICHAEL STEVENS.
Ring Spectroscopy and Photometry Todd Bradley January 9, 2014.
Cassini Huygens EECS 823 DIVYA CHALLA.
Fourth TEMPO Science Team Meeting
Tymon Khamsi, Caitlin Griffith, Lyn Doose, Jake Turner, Paulo Penteado
D. E. Shemansky† , J. A. Kammer ‡ , X. Zhang ‡ & Y. L. Yung‡
Near UV aerosol products
BAHIRDAR UNIVERSTY COLLEGE OF SCIENCE DEPARTMENT :MATERIAL SCIENCE AND ENGINNERING PRESENTETON ON: ELLIPSOMETRY INSTRUMENT PREPEARED BY :ZELALEM GETU AMSALE.
Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC Height-resolved aerosol R.Siddans.
UVIS Data Analysis and Modeling: Saturn FUV images
Saturn’s Auroras from the Cassini Ultraviolet Imaging Spectrograph
Paulina Wolkenberg1, Marek Banaszkiewicz1
Titan tholin properties from occultation and emission observations
Computing cloudy radiances
Computing cloudy radiances
Iapetus as measured by Cassini UVIS
Jet Propulsion Lab, California Institute of Technology
ECV definitions Mapping of ECV product with OSCAR variables
Cassini UVIS solar occultation
Introduction and Basic Concepts
UVIS Saturn EUVFUV Data Analysis
Dione’s O2 Exosphere C. J. Hansen January 2013.
UVIS PRIME Requests T55-T61
Revised tholin profile for the atmosphere of Titan
Titan Airglow FUV Limb Spectra From Cassini UVIS Observations
Kristopher Larsen July 26, 2005
UVIS Titan T0, TA Analysis
Presentation transcript:

* 07/16/96 Constraints on Titan’s Hign Haze from Cassini UVIS/ISS and Huygens DISR Observations *

Pioneer and Voyager Measurements * 07/16/96 Pioneer and Voyager Measurements West and Smith Icarus 90 (1991) *

Fractal Aggregates High-dimension Cluster-cluster Low-dimension * 07/16/96 Fractal Aggregates Cluster-cluster aggregate High-dimension aggregate Low-dimension aggregate M. Lemmon Dissertation *

Cassini/Huygens Observations * 07/16/96 Cassini/Huygens Observations UVIS Stellar Occultations: Aerosol extinction vertical profiles 170-190 nm UVIS Spectral Image Cubes: Scattering properties (phase function, albedo) 170-190 nm) ISS Limb Images: Scattering Profiles above 300 Km, 270 nm to 934 nm ISS Disk images: Aerosol Albedo, Surface Albedo (near 940 nm), Spatially-Resolved Polarization, Methane-Band Imagery DISR internal radiation measurements. Particle phase function, optical depth, wavelength dependence from ~400 nm to 1600 nm, but only at one location and altitudes less than 150 Km *

* 07/16/96 Titan EUVFUV *

* 07/16/96 938 nm Phase Angle 10 24 60 137 147 Data Model Ratio *

* 07/16/96 Phase 10 137 60 147 *

Derived Haze Properties * 07/16/96 Derived Haze Properties H = 65 Km Surface average albedo = 0.35; Haze single-scatter albedo = 0.99 *

Near-term plan Modeling * 07/16/96 Near-term plan Modeling Currently testing a spherical-shell intensity code (JPL) against pseudo spherical-shell code (Y. Yung and D. Tice, Caltech). Outcome will determine if a polarization pseudo-spherical code can be used. Need a model to relate a physical particle (e.g. aggregates) to optical properties (Mackowski and Mishchenko multi-sphere code combined with aggregate model) Run a suite of models for various size parameters, refractive indices and vertical profiles and compare with data (ISS, UVIS and DISR). Multi-components and/or vertical structure will be required – investigate direct inversion techniques Add NIMS data (1-5 micron wavelength) *