MEG実験アップグレードに向けたSiPMを用いた ポジトロン時間測定器の研究開発

Slides:



Advertisements
Similar presentations
Multi Pixel Photon Counters (MPPC) and Scintillating Fibers (Sci-Fi)
Advertisements

Performance of MPPC using laser system Photon sensor KEK Niigata university, ILC calorimeter group Sayaka IBA, Hiroaki ONO, Paul.
Study of Photon Sensors using the Laser System 05/7/12 Niigata University, Japan Sayaka Iba, Editha P. Jacosalem, Hiroaki Ono, Noriko.
MEG実験アップグレードに向けたMPPC読み出しによる 新しいタイミングカウンターの研究開発
MEG 実験 陽電子スペクトロメータの 性能と今後の展望 Yuki Fujii On behalf of the MEG collaboration JPS Hirosaki University 17 th Sep /9/17 日本物理学会@弘前大学 1.
Design and test of a high-speed beam monitor for hardon therapy H. Pernegger on behalf of Erich Griesmayer Fachhochschule Wr. Neustadt/Fotec Austria (H.
Upgrade of liquid xenon gamma-ray detector in MEG experiment Daisuke Kaneko, the University of Tokyo, on behalf of the MEG collaboration MEG EXPERIMENT.
The Transverse detector is made of an array of 256 scintillating fibers coupled to Avalanche PhotoDiodes (APD). The small size of the fibers (5X5mm) results.
Report on SiPM Tests SiPM as a alternative photo detector to replace PMT. Qauntify basic characteristics Measure Energy, Timing resolution Develop simulation.
Mar Toshiyuki Iwamoto (ICEPP) JPS 2010 Spring meeting, Okayama University1 MEG 実験による   e  探索 Run2009 東京大学素粒子物理国際研究センター 岩本敏幸 他 MEG コラボレーション.
Evaluation of Silicon Photomultiplier Arrays for the GlueX Barrel Calorimeter Carl Zorn Radiation Detector & Medical Imaging Group Jefferson Laboratory,
2 1/March/2015 日本物理学会大70回年次大会@早稲田大学 東大ICEPP 内山雄祐 他 MEG II collaboration.
14/02/2007 Paolo Walter Cattaneo 1 1.Trigger analysis 2.Muon rate 3.Q distribution 4.Baseline 5.Pulse shape 6.Z measurement 7.Att measurement OUTLINE.
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK) for KEKDTP photon sensor group.
MEG positron spectrometer Oleg Kiselev, PSI on behalf of MEG collaboration.
SiPM を用いたシンチレーションカウンターによる 細分化ポジトロン時間測定器のビーム試験結果 西村美紀 ( 東大 ) 内山雄祐(素セ)、大谷航(素セ)、 M. de Gerone ( Genova Univ. )、 Flavio Gatti(Genova Univ.) 、調翔平(九 大) 他 MEGコラボレーション.
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
Daisuke Kaneko, on behalf of the MEG(II) collaboration 26 Aug, Moscow Today and Tomorrow of the MEG experiment.
The MPPC Study for the GLD Calorimeter Readout Introduction Measurement of basic characteristics –Gain, Noise Rate, Cross-talk Measurement of uniformity.
Scintillation hodoscope with SiPM readout for the CLAS detector S. Stepanyan (JLAB) IEEE conference, Dresden, October 21, 2008.
MEG II 実験のための 陽電子タイミングカウンターの開発 PSI でのハイレートビーム試験 Development of Positron Timing Counter with SiPM for MEG-II Experiment Beam Test Result in the high rate.
MEG II 実験 液体キセノンガンマ線検出器に用いる 光検出器 MPPC の 実装に向けた最終試験 家城 佳 他 MEG II collaboration + 九大の方々.
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK)
PANDA Anton A. Izotov, Gatchina A.A.Izotov, Gatchina, PANDA Forward TOF Walls. Side TOF walls in dipole Magnet SiPM/PMT187.
The DRS2 Chip: A 4.5 GHz Waveform Digitizing Chip for the MEG Experiment Stefan Ritt Paul Scherrer Institute, Switzerland.
MEG II 実験のための 陽電子タイミングカウンター実機建設 Construction of Positron Timing Counter for MEG II experiment 西村美紀(東大) 他 MEGIIコラボレーション 日本物理学会 2015年 秋季大会 大阪市立大学(杉本キャンパス)
Status of photon sensor study at Niigata University -- SiPM and MPPC -- Photon sensor mini workshop 05/9/16 University Niigata University.
FSC Status and Plans Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA Russia workshop, ITEP 27 April 2010.
5-9 June 2006Erika Garutti - CALOR CALICE scintillator HCAL commissioning experience and test beam program Erika Garutti On behalf of the CALICE.
(s)T3B Update – Calibration and Temperature Corrections AHCAL meeting– December 13 th 2011 – Hamburg Christian Soldner Max-Planck-Institute for Physics.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
Development of UV-sensitive MPPC for upgrade of liquid xenon detector in MEG experiment Daisuke Kaneko, on behalf of the MEG Collaboration µ γ Liquid xenon.
GSI 9Feb09 NMI3 – Integrated Infrastructure Initiative for Neutron Scattering and Muon Spectroscopy, Joint Research Activity (JRA8): MUON-S. Contract:
SiPM Workshop EU-FP7(HP3), Vienna, 16 Feb F.G. H.O. Study of scintillator detectors time resolution with different SiPM readout on T10 test beam.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group Kobe Introduction Performance.
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK) for KEKDTP photon sensor group.
M.Taguchi and T.Nobuhara(Kyoto) HPK MPPC(Multi Pixel Photon Counter) status T2K280m meeting.
Performance of 1600-pixel MPPC for the GLD Calorimeter Readout Jan. 30(Tue.) Korea-Japan Joint Shinshu Univ. Takashi Maeda ( Univ. of Tsukuba)
IFR Detector R&D status
IFR Detector R&D status
Prospect of SiPM application to TOF in PANDA
小川真治、 他MEG 第72回年次大会 MEG II 実験液体キセノンガンマ線検出器における取得データサイズ削減手法の開発 Development of the data size reduction method for MEG II liquid.
The MiniBooNE Little Muon Counter Detector
An Active TARget for MEG-II, a status report
An active target for MEG2, a status report
Performance of LYSO and CeBr3 crystals readout by SiPM
FSC status and plans Pavel Semenov IHEP, Protvino
Results achieved so far to improve the RPC rate capability
Cecilia Voena INFN Roma on behalf of the MEG collaboration
Liquid Xenon Detector for the MEG Experiment
大強度
K. Sedlak, A. Stoykov, R. Scheuermann
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
R&D of MPPC for T2K experiment
High Rate Photon Irradiation Test with an 8-Plane TRT Sector Prototype
Stefan Ritt Paul Scherrer Institute, Switzerland
Development of hybrid photomultiplier for Hyper-Kamiokande
HE instrument and in-orbit performance
MPPC for T2K Fine-Grained Detector
MEG II実験 液体キセノン検出器の建設状況
Daisuke Kaneko, ICEPP, Univ. of Tokyo on behalf of MEG collaboration
COherent Muon to Electron Transition (COMET)
西村美紀(東大) 他 MEGIIコラボレーション 日本物理学会 第73回年次大会(2018年) 東京理科大学(野田キャンパス)
Decay Angular Measurement in the MEG Experiment
The MPPC Study for the GLD Calorimeter Readout
New Results from the MEG Experiment
Presentation transcript:

MEG実験アップグレードに向けたSiPMを用いた ポジトロン時間測定器の研究開発 西村美紀 (東大) 他 MEGコラボレーション

outline Introduction Pixelated timing counter MEG Upgrade Pixelated timing counter Concept Test of prototype of single pixel Basic characteristic Optimization Beam test Summary and Prospects

μ → eγ Search for charged lepton flavor violation (cLFV), μ → eγ SUSY-Seesaw Search for charged lepton flavor violation (cLFV), μ → eγ Forbidden in the SM Some models predict large branching ratios Requirement high intensity DC 𝜇 + beam high rate tolerable positron detector high performance gamma-ray detector Current best upper limit set by MEG: 2.4× 10 −12 (Phys. Rev. Lett. 107 (2011) 171801) S.Antusch et al, JHEP 0611:090 (2006) at rest Signal 52.8MeV Back-to-back Time coincidence Physics BG (radiative muon decay) <52.8MeV Any angle Accidental BG Random Dominant

MEG Most stringent upper limit of 2.4× 10 −12 in summer 2011 μ beam at PSI (Paul Scherrer Institute) -> a muon stopping rate of 3× 10 7 Hz 900L LXe gamma detector with PMT Positron spectrometer COBRA Gradient magnetic field -> sweep the positron out of the detector quickly the same momentum -> the same radius Drift chamber Momentum, decay vertex, emission angle and track length Timing counter Impact time Most stringent upper limit of 2.4× 10 −12 in summer 2011 Sensitivity goal -> ~6× 10 −13 in 2013

Upgrade sensitivity goal -> 6× 10 −14 μ beam Xenon Calorimeter COBRA sensitivity goal -> 6× 10 −14 Improve detection efficiency Improve resolutions -> Background reduction μ beam a higher beam intensity ~ 10 8 Xenon Calorimeter Smaller photo-sensor Positron spectrometer Positron tracker Stereo wire drift chamber efficiency ->minimize material along the positrons path to the timing counter Resolution ->increase measurement points present DC TC upgrade - Timing counter Pixelated Timing Counter (detail of MEG upgrade; arXiv:1301.7225)

Pixelated Timing Counter Scintillator ~90cm ~30cm PMT ~300 pixels ×2 (upstream, downstream side) present upgrade Composed of several hundreds of small scintillator plates with SiPM readout A good timing resolution of single pixel Using multiple hit time Less pileup Flexible detector layout Additional track information Insensitivity to magnetic field Operational in helium gas Presentの写真にdimension -> Readout by waveform digitizer (DRS developed at PSI)

Multi-counter hit MC simulation 5-counter hit Signal positron

⇒ the average time resolution : Multiple hit scheme Total timing counter resolution is 𝜎 2 𝑡𝑜𝑡𝑎𝑙 𝑁 ℎ𝑖𝑡 = 𝜎 2 𝑠𝑖𝑛𝑔𝑙𝑒 𝑁 ℎ𝑖𝑡 + 𝜎 2 𝑖𝑛𝑡𝑒𝑟−𝑝𝑖𝑥𝑒𝑙 𝑁 ℎ𝑖𝑡 + 𝜎 2 𝑀𝑆 𝑁 ℎ𝑖𝑡 ⇒ the average time resolution : 30-35 ps (63% ↓) 𝑡 𝑒𝛾 resolution 𝝈 𝒆𝜸 = 130 ps → 84 ps (35% ↓) track length: 75 ps→ 11 ps gamma side: 67 ps →76 ps Timing counter: 76ps → 30-35ps Requirement Good single pixel resolution Hit many pixels 30-40 ps ~5ps Background 35%減らせる、trackerのためにも作り直さないといけない。

Single Pixel Study Test Counter Source Sr90 (<2.28MeV, β-ray) HAMAMATSU MPPC (S10362-33-050C) 3x3 mm2, 50mm-3600 pixels glued with optical grease (OKEN6262A) Source Sr90 (<2.28MeV, β-ray) Reference counter 5×5×5 mm Readout by a MPPC Trigger, Collimate Waveform digitizer sampling (DRS developed at PSI) @5GSPS Voltage amplifier developed by PSI (Gain~20, 600 MHz bandwidth) Shaping with high-pass filter & pole-zero cancellation Long cable before amplifier KEITHLEY Pico ammeter for MPPC bias (HV), Bias 218V~222V (for series connection) 3 or 4 MPPCs Series connection

Series vs. parallel connection We can’t apply bias voltage to each MPPC. We should choose MPPCs which have the same characteristic. Capacitance ↑ -> waveform wider Series Automatically bias voltage is adjusted. Waveform is sharper. Series connection gives us better results.

Analysis Signal time is picked-off by Constant-Fraction method (~10%) very leading-edge is relevant to precise timing e hit time is reconstructed by the average of times measured at the both ends Resolution of test counter is evaluated from (t1 + t2)/2 – tref baseline restoration by the pole-zero cancellation @ preamp trise~1.7 ns

Bias dependence Good time resolution of 43 ps is obtained. BC422 6x3x0.5 cm3 3M mirror film 3 MPPCs connected in series operation Break-down voltage Good time resolution of 43 ps is obtained. Improvement in resolution as over-voltage then degraded because of higher dark noise Following test done at over-voltage =2.3V

Temperature dependence Relatively large temperature coeff. of break-down voltage for MPPC (56mV/℃) might be an issue Temp. variation in COBRA is a few ℃ Time shift due to this is expected to be ~15 ps doesn’t seem a big issue Possible solutions Improve detector temp. stabilization KETEK SiPM with lower temp. coeff. (<1%/℃) Measured time shift vs over voltage ~100ps/V MPPCは何パーセントか。

Position Reconstruction 𝑡 0 𝑡 1 𝑥=𝑣× 𝑡 1 − 𝑡 0 2 𝑥 Using position scanning data, positron hit position in a pixel can be reconstructed. 𝑣 90x30x5 mm pixel measured point Resolution ~ 8 mm 𝑥=𝑣× 𝑡 1 − 𝑡 0 2 -> scintillation light speed

Optimization Size Scintillators Manufacture of SiPM

Size Optimization Single resolution is worse with larger pixel. 3cm height measured MC Single resolution is worse with larger pixel. However # of hit pixel increases with larger pixels.

Result of size optimization better MC Larger pixel is better. (Effect of high rate is not included.)

Single Resolution (ps) Scintillator Type Test BC418, 420, and 422 which is 90x40x5mm with 4MPPCs Properties of ultra-fast plastic scintillators from Saint-Gobain Scintillator Type Single Resolution (ps) BC422 51.2 BC420 57.7 BC418 55.8 2018/12/8

Manufacture of SiPM (Preliminary) HAMAMATSU AdvanSiD Best resolution ~ 58 ps ~ 65 ps KETEK HAMAMATSU SiPMs give us the best resolution. ~ 75 ps

Beam test in PSI C1 C2 positron Beamline Motivation Check the noise in the area Obtain data where the beam penetrates two counters Check the response to MIP Check if we can obtain consistent time resolution in the area Pre-test for planned beam test with prototype detector. Setup Mu beam Counter 1 (C1): BC422 60x30x5mm, 3M wrapping Counter 2 (C2): BC422 90x30x5mm, 3M wrapping Light tight shielding with black tape. 4 Pt100 at each MPPC’s board (data logger) Preamplifier Stage, stands HV modules -> Expected resolution from lab data is ~33ps (C1 43.6 ps , C2 49.9 ps) no inter-counter jitter 4 cm C1 C2 y z 69 cm positron Beamline degrader Target Collimator

Noise Noise increased by ~40%. Lab Beam test Noise increased by ~40%. Resolution depends on noise. (~ 2-3 ps/ mV) -> Noise must be decreased. Now PCB is being improved.

Result Without position cut, two counter resolution is 40 ps. Pulse height decreases by 13% (C1-1) and 21% (C2-1) Expected decreasing is 10 – 20 % (Lab: <2MeV beta from Sr90, Beam test: MIP) 4cm C2 C1 0.5 cm Without position cut, two counter resolution is 40 ps. With position cut of 5mm width at the center, resolution is 35 ps. -> Analysis at selected position gives the consistent resolution with lab data. (expected ~33ps) We can obtain better resolution by multiple hits. (single ~ 50 ps)

Summary and Prospects summary prospects Pixelated timing counter with an improved timing resolution is under development for MEG upgrade. About single counter, good time resolution of ~43 ps was obtained. Several optimization about single pixel was done. Size, scintillator, SiPM Beam test Though noise increase good resolution can be obtained. By multiple hit, better resolution can be obtained. prospects decide the pixel layout construct the prototype detector with several tens of pixels in next spring and summer. Prove multiple hit scheme