Gene expression changes in damaged osteoarthritic cartilage identify a signature of non-chondrogenic and mechanical responses  S.L. Dunn, J. Soul, S.

Slides:



Advertisements
Similar presentations
Volume 16, Pages (February 2017)
Advertisements

The effect of platelet-rich plasma on the regenerative therapy of muscle derived stem cells for articular cartilage repair  Y. Mifune, T. Matsumoto, K.
Volume 8, Issue 4, Pages (April 2017)
Identification of synovial fluid microRNA signature in knee osteoarthritis: differentiating early- and late-stage knee osteoarthritis  Y.-H. Li, G. Tavallaee,
B. Bai, Y. Li  Osteoarthritis and Cartilage 
M. Fu, G. Huang, Z. Zhang, J. Liu, Z. Zhang, Z. Huang, B. Yu, F. Meng 
Volume 2, Issue 2, Pages (February 2016)
A bioinformatic analysis of microRNAs role in osteoarthritis
Inhibition of Gsk3β in cartilage induces osteoarthritic features through activation of the canonical Wnt signaling pathway  R.L. Miclea, M. Siebelt, L.
C. Karlsson, T. Dehne, A. Lindahl, M. Brittberg, A. Pruss, M
Granulocyte macrophage – colony stimulating factor (GM-CSF) significantly enhances articular cartilage repair potential by microfracture  M.-D. Truong,
Combination of ADMSCs and chondrocytes reduces hypertrophy and improves the functional properties of osteoarthritic cartilage  M.R. Ahmed, A. Mehmood,
Synovial mesenchymal stem cells from osteo- or rheumatoid arthritis joints exhibit good potential for cartilage repair using a scaffold-free tissue engineering.
MicroRNA221-3p modulates Ets-1 expression in synovial fibroblasts from patients with osteoarthritis of temporomandibular joint  J. Xu, Y. Liu, M. Deng,
Identification of the pathogenic pathways in osteoarthritic hip cartilage: commonality and discord between hip and knee OA  Y. Xu, M.J. Barter, D.C. Swan,
TGFβ inhibition during expansion phase increases the chondrogenic re-differentiation capacity of human articular chondrocytes  R. Narcisi, L. Signorile,
The effect of platelet-rich plasma on the regenerative therapy of muscle derived stem cells for articular cartilage repair  Y. Mifune, T. Matsumoto, K.
The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-α and MMP13  S.W. Jones, Ph.D., G.
Altered microRNA expression in stenoses of native arteriovenous fistulas in hemodialysis patients  Lei Lv, MD, Weibin Huang, MD, Jiwei Zhang, MD, Yaxue.
Synovial incorporation of polyacrylamide hydrogel after injection into normal and osteoarthritic animal joints  L. Christensen, L. Camitz, K.E. Illigen,
Human osteoarthritic synovium impacts chondrogenic differentiation of mesenchymal stem cells via macrophage polarisation state  N. Fahy, M.L. de Vries-van.
Bone morphogenetic protein 2/SMAD signalling in human ligamentocytes of degenerated and aged anterior cruciate ligaments  K. Ruschke, C. Meier, M. Ullah,
Mechanical loading regimes affect the anabolic and catabolic activities by chondrocytes encapsulated in PEG hydrogels  G.D. Nicodemus, S.J. Bryant  Osteoarthritis.
Next-generation Sequencing Identifies Articular Cartilage and Subchondral Bone Mirnas after ESWT on Early Osteoarthritis Knee  C.-J. Wang, J.-H. Cheng,
The chondroprotective effect of selective COX-2 inhibition in osteoarthritis: ex vivo evaluation of human cartilage tissue after in vivo treatment  T.N.
Gene expression and cell differentiation in matrix-associated chondrocyte transplantation grafts: a comparative study  C. Albrecht, B. Tichy, S. Nürnberger,
K.A. Payne, D.M. Didiano, C.R. Chu  Osteoarthritis and Cartilage 
C.B. Chang, S.A. Han, E.M. Kim, S. Lee, S.C. Seong, M.C. Lee 
MicroRNAs of rat articular cartilage at different developmental stages identified by Solexa sequencing  J. Sun, N. Zhong, Q. Li, Z. Min, W. Zhao, Q. Sun,
Identification of synovial fluid microRNA signature in knee osteoarthritis: differentiating early- and late-stage knee osteoarthritis  Y.-H. Li, G. Tavallaee,
Expression and function of the insulin receptor in normal and osteoarthritic human chondrocytes: modulation of anabolic gene expression, glucose transport.
C.B. Chang, S.A. Han, E.M. Kim, S. Lee, S.C. Seong, M.C. Lee 
Volume 13, Issue 9, Pages (December 2015)
Learning More from Microarrays: Insights from Modules and Networks
C. -H. Chou, M. T. M. Lee, I. -W. Song, L. -S. Lu, H. -C. Shen, C. -H
Depletion of primary cilia in articular chondrocytes results in reduced Gli3 repressor to activator ratio, increased Hedgehog signaling, and symptoms.
Inhibition of Gsk3β in cartilage induces osteoarthritic features through activation of the canonical Wnt signaling pathway  R.L. Miclea, M. Siebelt, L.
A gene expression study of normal and damaged cartilage in anteromedial gonarthrosis, a phenotype of osteoarthritis  S. Snelling, R. Rout, R. Davidson,
H.H. Lee, M.J. O'Malley, N.A. Friel, C.R. Chu 
The short-term therapeutic effect of recombinant human bone morphogenetic protein-2 on collagenase-induced lumbar facet joint osteoarthritis in rats 
Understanding Tissue-Specific Gene Regulation
Expression of the semicarbazide-sensitive amine oxidase in articular cartilage: its role in terminal differentiation of chondrocytes in rat and human 
S.M. Hosseini, M.B. Veldink, K. Ito, C.C. van Donkelaar 
Characterization of pro-apoptotic and matrix-degradative gene expression following induction of osteoarthritis in mature and aged rabbits  Dr. C.M. Robertson,
Osteoarthritis year 2013 in review: genetics and genomics
Synovial mesenchymal stem cells from osteo- or rheumatoid arthritis joints exhibit good potential for cartilage repair using a scaffold-free tissue engineering.
Volume 8, Issue 4, Pages (April 2017)
Exercise-driven metabolic pathways in healthy cartilage
Volume 23, Issue 8, Pages (August 2015)
Volume 22, Issue 13, Pages (March 2018)
M. Cucchiarini, H. Madry, E.F. Terwilliger 
Gene expression variation in human meniscus: molecular and clinical implications for cartilage homeostasis and early osteoarthritis development  M.F.
Bisphosphonate rescues cartilage from trauma damage by promoting mechanical sensitivity and calcium signaling in chondrocytes  Y. Zhou, M. Park, L. Wang,
Volume 10, Issue 5, Pages (May 2018)
B. Ajekigbe, K. Cheung, Y. Xu, A. J. Skelton, A. Panagiotopoulos, J
Molecular differentiation between osteophytic and articular cartilage – clues for a transient and permanent chondrocyte phenotype  K. Gelse, A.B. Ekici,
Volume 9, Issue 5, Pages (November 2017)
Activation of Indian hedgehog promotes chondrocyte hypertrophy and upregulation of MMP-13 in human osteoarthritic cartilage  F. Wei, J. Zhou, X. Wei,
Regulation of senescence associated signaling mechanisms in chondrocytes for cartilage tissue regeneration  S. Ashraf, B.-H. Cha, J.-S. Kim, J. Ahn, I.
Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis  B.Y. Chan, E.S. Fuller, A.K. Russell, S.M. Smith, M.M. Smith,
R.H. Brophy, B. Zhang, L. Cai, R.W. Wright, L.J. Sandell, M.F. Rai 
Expression profile of long noncoding rnas in osteoarthritis patients
Increased presence of cells with multiple elongated processes in osteoarthritic femoral head cartilage  I. Holloway, M. Kayser, D.A. Lee, D.L. Bader,
Altered expression of chondroitin sulfate structure modifying sulfotransferases in the articular cartilage from adult osteoarthritis and Kashin-Beck disease 
Post-transcriptional gene regulation following exposure of osteoarthritic human articular chondrocytes to hyperosmotic conditions  S.R. Tew, O. Vasieva,
Membrane culture and reduced oxygen tension enhances cartilage matrix formation from equine cord blood mesenchymal stromal cells in vitro  C. Co, M.K.
Volume 15, Issue 12, Pages (June 2016)
CD4+CLA+CD103+ T cells from human blood and skin share a transcriptional profile. CD4+CLA+CD103+ T cells from human blood and skin share a transcriptional.
Innate immune activation occurs in acute food protein–induced enterocolitis syndrome reactions  Sam Mehr, MBBS, BMedSci, FRACP, FRCPA, Eric Lee, MBBS,
Volume 28, Issue 3, Pages e7 (July 2019)
Presentation transcript:

Gene expression changes in damaged osteoarthritic cartilage identify a signature of non-chondrogenic and mechanical responses  S.L. Dunn, J. Soul, S. Anand, J.-M. Schwartz, R.P. Boot-Handford, T.E. Hardingham  Osteoarthritis and Cartilage  Volume 24, Issue 8, Pages 1431-1440 (August 2016) DOI: 10.1016/j.joca.2016.03.007 Copyright © 2016 The Authors Terms and Conditions

Fig. 1 Histological grading and GAG content of OA articular cartilage. Safranin O staining of the PLC (A) and DMC (B) of representative OA patient samples. Modified Mankin score of the articular cartilage (C) and GAG content of the cartilage tissue (D) obtained from the PLC and the DMC and used for RNA-seq analysis and an independent patient cohort for validation (n = 16). Images acquired using a [20×/0.80 Plan Apo] objective using the 3D Histech Pannoramic 250 Flash II slide scanner. Magnification× 5. ****P < 0.0001, **P < 0.01. Osteoarthritis and Cartilage 2016 24, 1431-1440DOI: (10.1016/j.joca.2016.03.007) Copyright © 2016 The Authors Terms and Conditions

Fig. 2 Comparison of intact vs damaged OA cartilage transcriptome studies. Overlap of DEGs identified by the RNA-seq data and the two existing microarray datasets Snelling et al. and Ramos et al. (A). The log2 fold change of the 22 DEGs in the three compared datasets (B). Osteoarthritis and Cartilage 2016 24, 1431-1440DOI: (10.1016/j.joca.2016.03.007) Copyright © 2016 The Authors Terms and Conditions

Fig. 3 PhenomeExpress analysis. Network analysis incorporating cross-species gene-phenotype associations, identified 23 differentially expressed networks based on direct protein–protein interactions in the damaged cartilage. Sub-networks linked to OA included; mitotic cell cycle (P = 0.0001) (A), regulation of transcription (P = 0.021) (B), Wnt signalling and calcium modulating pathway (P = 0.0102) (C), apoptotic processes (P = 0.0056) (D), negative regulation of blood coagulation (P = 0.0001) (E) and ECM organisation (P = 0.0001) (F). The fold change of the proteins is shown by the node colour and OA associated phenotype annotated proteins used to generate the sub-networks are shown with a black border. Osteoarthritis and Cartilage 2016 24, 1431-1440DOI: (10.1016/j.joca.2016.03.007) Copyright © 2016 The Authors Terms and Conditions

Fig. 4 Multi-layered architecture of damaged OA cartilage signalling. Network showing regulatory interactions between the differentially expressed, predicted upstream TFs and the PhenomeExpress identified pathways in damaged OA cartilage. Transcriptional links between the four upstream TFs are shown with grey arrows. Regulatory links between the TFs and significantly upregulated target genes present in PhenomeExpress pathways are shown red, green, pink and blue for FOSL1, AHR, E2F1 and FOXM1 respectively. The PhenomeExpress pathways are named by the top enriched GO biological process term. Only PhenomeExpress pathways with at least two target genes present are shown. Osteoarthritis and Cartilage 2016 24, 1431-1440DOI: (10.1016/j.joca.2016.03.007) Copyright © 2016 The Authors Terms and Conditions